
Ancestral Logic: a Proof Theoretical Study

Liron Cohen and Arnon Avron

Tel Aviv University, Israel

Abstract. Many efforts have been made in recent years to construct
formal systems for mechanizing mathematical reasoning. A framework
which seems particularly suitable for this task is ancestral logic – the
logic obtained by augmenting first-order logic with a transitive closure
operator. While the study of this logic has so far been mostly model-
theoretical, this work is devoted to its proof theory (which is much
more relevant for the task of mechanizing mathematics). We develop
a Gentzen-style proof system TCG which is sound for ancestral logic,
and prove its equivalence to previous systems for the reflexive transitive
closure operator by providing translation algorithms between them. We
further provide evidence that TCG indeed encompasses all forms of rea-
soning for this logic that are used in practice. The central rule of TCG is
an induction rule which generalizes that of Peano Arithmetic (PA). In
the case of arithmetics we show that the ordinal number of TCG is ε0.

Keywords: ancestral logic, transitive closure, proof theory, Gentzen-
style systems, constructive consistency proofs.

1 Introductions

In light of recent advances in the field of automated reasoning, formal systems
for mechanizing mathematical reasoning are attracting a lot of interest (see, e.g.,
[11,5,6,15]). Most of these systems go beyond first-order logic (FOL), because the
latter is too weak for this task: one cannot even give in it a categorical character-
ization of the most basic concept of mathematics - the natural numbers. Using
second-order logic (SOL) for this task, however, has many disadvantages. SOL
has doubtful semantics, as it is based on debatable ontological commitments.
Moreover, it does not seem satisfactory that dealing with basic notions (such as
the natural numbers) requires using the strong notions involved in SOL, such as
quantifying over all subsets of infinite sets. In addition, SOL is difficult to deal
with from a proof-theoretical point of view.

The above considerations imply that the most suitable framework for mech-
anizing mathematical reasoning should be provided by some logic between FOL
and SOL. A framework that seems particularly suitable for this task is ancestral
logic – the logic obtained by augmenting FOL with the concept of transitive
closure of a given relation. Indeed, ancestral logic provides a suitable framework
for the formalization of mathematics as it is appropriate for defining fundamen-
tal abstract formulations of transitive relations that occur commonly in basic
mathematics (see, e.g., [2,16,17]).

Most of the works on ancestral logic have so far been carried out in the
context of finite model theory (see, e.g., [7]). Clearly, the focus on finite structures
renders these works irrelevant for the task of formalizing mathematics. Moreover,
most of this research has been dedicated to model theory, while for mechanizing
mathematics we need useful proof systems.

This work provides a proof-theoretical study of ancestral logic. In [2] a for-
mal proof system for ancestral logic was suggested. Therein it was stated that: “a
major research task here is to find out what other rules (if any) should be added
in order to make the system ’complete’ in some reasonable sense”. In this work
we provide an answer to this question. We show that the system proposed in [2]
is too weak, as it fails to prove certain fundamental properties of the transitive
closure operator. We then take further steps towards a useful proof system for
ancestral logic by proposing a stronger system, TCG, which is sound for this logic
and encompasses all forms of reasoning for this logic that are used in practice.
TCG is proven to be equivalent to systems previously suggested in the literature
for the reflexive transitive closure, in the sense that there are translation algo-
rithms between them that preserve provability. We further investigate the proof
theoretical method of constructive consistency proofs and show that in the case
of arithmetics the ordinal number of the system TCG is ε0.

Due to lack of space, most proofs in the paper are omitted, and will appear in
an extended version. An appendix with full proofs is enclosed in this submitted
draft, to be consulted at the discretion of program committee members.

2 Logics with a Transitive Closure Operator

In mathematics, the transitive closure of a binary relation R is defined as the
minimal transitive relation that contains R. In general, the transitive closure
operator, TC, is not first-order definable (see, e.g., [8,1]). Thus, we present an-
cestral logic, which is the logic obtained by augmenting FOL with a transitive
closure operator1. Below are the corresponding formal definitions of a first-order
language augmented by a transitive closure operator, and its semantics.

In this paper σ denotes a first-order signature with equality. A structure for
a first-order language based on σ is an ordered pair M = 〈D, I〉, where D is a
non-empty set of elements (the domain) and I is an interpretation function on
σ. To avoid confusion regarding parentheses, we use (,) for parentheses in a
formal language, and [,] for parentheses in the metalanguage.

Definition 1. Let σ be a signature for a first-order language with equality, and
let M = 〈D, I〉 be a structure for σ and v an assignment in M .

– The language LTC (σ) is defined as the first-order language based on σ, with
the addition of the TC operator defined by: for any formula ϕ in LTC (σ),
x, y distinct variables, and s, t terms, (TCx,yϕ) (s, t) is a formula in LTC (σ).
The free occurrences of x and y in ϕ are bound in this formula.

1 Such logics are also sometimes called Transitive Closure Logic.

– The pair 〈M,v〉 is said to satisfy (TCx,yϕ) (s, t) if there exist a0, ..., an ∈ D
(n > 0) such that v[s] = a0, v[t] = an, and ϕ is satisfied by M and v[x :=
ai, y := ai+1]

2 for 0 ≤ i ≤ n− 1.
The logic obtained is called Ancestral Logic and it is denoted by LTC .

In the semantics presented here, (TCx,yϕ) (s, t) requires that there should be
at least one ϕ-step between s and t. However, another well studied form of the
transitive closure operator [12,13,14] is the reflexive form, RTC.

Definition 2. Let σ be a first-order signature, and letM = 〈D, I〉 be a structure
for σ and v an assignment in M .

– The language LRTC (σ) is defined as LTC (σ) with TC replaced by RTC.
– The pair 〈M,v〉 is said to satisfy (RTCx,yϕ) (s, t) if s = t or there exist
ao, ..., an ∈ D (n > 0) such that v[s] = a0, v[t] = an, and ϕ is satisfied by M
and v[x := ai, y := ai+1] for 0 ≤ i ≤ n− 1.
Similarly, the obtained logic is denoted by LRTC .

Using equality, the two forms of the transitive closure operator are definable in
terms of each other. The reflexive transitive closure operator is definable using
the non-reflexive form by

(RTCx,yϕ) (s, t) := (TCx,yϕ) (s, t) ∨ s = t,

while the non-reflexive TC operator is definable, for example, by

(TCx,yϕ) (s, t) : = ∃z
(
ϕ

{
s

x
,
z

y

}
∧ (RTCx,yϕ) (z, t)

)
where z is a fresh variable.3

One difference between the two forms is the ability to define quantifiers. The
existential quantifier can be defined using the TC operator [2], however it cannot
be defined using the RTC operator, as we prove below.

Proposition 1. The existential quantifier is not definable in the quantifier-free
fragment of LRTC .

Proof. Take σ to consist of a constant symbol 0 and a unary predicate symbol
P . It can be easily shown by induction that each quantifier-free sentence ψ in
LσRTC is logically equivalent to one of the following sentences: P (0), ¬P (0),
0 = 0, or 0 6= 0. Since ∃xP (x) is clearly not logically equivalent to any of these
four sentences, we conclude that the existential quantifier cannot be defined in
the quantifier-free fragment of LRTC . ut

2 v [x := a] denotes the x-variant of v which assigns to x the element a from D.
3 ϕ

{
t1
x1
, ..., tn

xn

}
denotes the formula obtained from ϕ by substituting ti for each free

occurrence of xi in ϕ, assuming that t1, ..., tn are free for x1, ...xn in ϕ.

The concept of the transitive closure operator is embedded in our understanding
of the natural numbers. Therefore, it is only natural to explore the expressive
power of various first-order languages for arithmetic augmented by the TC op-
erator. Let 0 be a constant symbol and s a unary function symbol. It is known
that in L{0,s}TC together with the standard axioms for the successor function, the
following sentence categorically characterize the natural numbers:

∀x (x = 0 ∨ (TCw,u (s(w) = u)) (0, x)) (1)

In [2] it was also shown that all recursive functions and relations are definable
in L{0,s,+}TC , where + is a binary function symbol. This implies that the upward
Löwenheim-Skolem theorem fails for ancestral logic, and that ancestral logic is
finitary, i.e. the compactness theorem fails for it. Moreover, ancestral logic is
not even arithmetic, thus any formal deductive system which is sound for it is
incomplete.

3 Gentzen-Style Proof Systems for Ancestral Logic

Ideally, we would like to have a consistent, sound, and complete axiomatic system
for ancestral logic. However, since there could be no sound and complete system
for ancestral logic, one should instead look for useful and effective partial for-
mal systems that are still adequate for formalizing mathematical reasoning. The
systems defined in this section are extensions of Gentzen’s system for classical
first-order logic with equality, LK= [9].

In what follows the letters Γ,∆ represent finite (possibly empty) multisets
of formulas, ϕ,ψ, φ arbitrary formulas, x, y, z, u, v, w variables, and r, s, t terms.
For convenience, we shall denote a sequent of the form Γ ⇒ {ϕ} by Γ ⇒ ϕ, and
employ other standard abbreviations, such as Γ,∆ instead of Γ ∪∆. To improve
readability, in some derivations we omit the context from the sequents.

In [12,13,14] two equivalent Hilbert-style systems for ancestral logic in which
the reflexive transitive closure operator, RTC, was taken as primitive were sug-
gested. Below is a Gentzen-style proof system for the RTC operator which is
equivalent to the Hilbert-style systems presented in the original papers.

Definition 3.
The system RTCG is defined by adding to LK= the axiom

Γ ⇒ ∆, (RTCx,yϕ) (s, s) (2)

and the following inference rules:

Γ ⇒ ∆,ϕ
{
s
x ,

t
y

}
Γ ⇒ ∆, (RTCx,yϕ) (s, t) (3)

Γ ⇒ ∆, (RTCx,yϕ) (s, r) Γ ⇒ ∆, (RTCx,yϕ) (r, t)

Γ ⇒ ∆, (RTCx,yϕ) (s, t) (4)

Γ, ψ (x) , ϕ (x, y)⇒ ∆,ψ
{
y
x

}
Γ, ψ

{
s
x

}
, (RTCx,yϕ) (s, t)⇒ ∆,ψ

{
t
x

}
(5)

In all three rules we assume that the terms which are substituted are free for
substitution and that no forbidden capturing occurs. In Rule (5) x should not
occur free in Γ and ∆, and y should not occur free in Γ,∆ and ψ.

Rule (5) is a generalized induction principle which states that if t is a ϕ-
descendant of s (or equal to it), then if s has some property which is passed
down from one object to another if they are ϕ-related, then t also has that
property.

We next show that RTCG is adequate for RTC, in the sense that it does give
the RTC operator the intended meaning of the reflexive transitive closure, and
can derive all fundamental rules concerning the RTC operator that have been
suggested in the literature (as far as we know).

Proposition 2. The following rules are derivable in RTCG4:

Γ ⇒ ∆,ϕ
{
s
x ,

r
y

}
Γ ⇒ ∆, (RTCx,yϕ) (r, t)

Γ ⇒ ∆, (RTCx,yϕ) (s, t)

Γ ⇒ ∆, (RTCx,yϕ) (s, r) Γ ⇒ ∆,ϕ
{
r
x ,

t
y

}
Γ ⇒ ∆, (RTCx,yϕ) (s, t)

(6)

Γ ⇒ ∆, (RTCx,yϕ) (s, t)

Γ ⇒ ∆, s = t,∃z
(
(RTCx,yϕ) (s, z) ∧ ϕ

{
z
x ,

t
y

})
Γ ⇒ ∆, (RTCx,yϕ) (s, t)

Γ ⇒ ∆, s = t,∃z
(
ϕ
{
s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

) (7)

Γ ⇒ ∆, (RTCx,yϕ) (s, t)

Γ ⇒ ∆, (RTCy,xϕ) (t, s)

(RTCx,yϕ) (s, t) , Γ ⇒ ∆

(RTCy,xϕ) (t, s) , Γ ⇒ ∆
(8)

Γ ⇒ ∆, (RTCx,yϕ) (s, t)

Γ ⇒ ∆,
(
RTCu,vϕ

{
u
x
, v
y

})
(s, t)

(RTCx,yϕ) (s, t) , Γ ⇒ ∆(
RTCu,vϕ

{
u
x
, v
y

})
(s, t) , Γ ⇒ ∆

(9)

Γ, ϕ⇒ ∆,ψ

Γ, (RTCx,yϕ) (s, t)⇒ ∆, (RTCx,yψ) (s, t)
(10)

(RTCx,yϕ) (s, t) , Γ ⇒ ∆

(RTCu,v (RTCx,yϕ) (u, v)) (s, t) , Γ ⇒ ∆
(11)

ϕ
{
s
x

}
, Γ ⇒ ∆

(RTCx,yϕ) (s, t) , Γ ⇒ s = t,∆

ϕ
{
t
y

}
, Γ ⇒ ∆

(RTCx,yϕ) (s, t) , Γ ⇒ s = t,∆
(12)

4 These rules are counterparts of the Hilbert-style rules suggested in [12,13,14].

Conditions:
– In all the rules we assume that the terms which are substituted are free

for substitution and that no forbidden capturing occurs.
– In (7) z should not occur free in Γ,∆ and ϕ

{
s
x ,

t
y

}
.

– In (9) the conditions are the usual ones concerning the α-rule.
– In (10) x, y should not occur free in Γ,∆.
– In (11) u, v should not occur free in ϕ.
– In (12) y should not occur free in Γ,∆ or s in the left rule, and x should

not occur free in Γ,∆ or t in the right rule.

In [2] a Gentzen-style system for the non-reflexive transitive closure operator
was presented. Therein it was stated that: “a major research task here is to
find out what other rules (if any) should be added in order to make the system
’complete’ in some reasonable sense”. In this section we answer this (two part)
research question. First we show that the system in [2] is too weak for ancestral
logic, as it fails to prove certain fundamental properties of the transitive closure
operator. Then we present a stronger variation of the system which encompasses
all forms of reasoning for ancestral logic that are used in practice.

Below is the proof system for the TC operator suggested in [2].

Definition 4.
The system TC ′G is defined by adding to LK= the following inference rules:

Γ ⇒ ∆,ϕ
{
s
x ,

t
y

}
Γ ⇒ ∆, (TCx,yϕ) (s, t) (13)

Γ ⇒ ∆, (TCx,yϕ) (s, r) Γ ⇒ ∆, (TCx,yϕ) (r, t)

Γ ⇒ ∆, (TCx,yϕ) (s, t) (14)

Γ, ψ (x) , ϕ (x, y)⇒ ∆,ψ
{
y
x

}
Γ, ψ

{
s
x

}
, (TCx,yϕ) (s, t)⇒ ∆,ψ

{
t
x

}
(15)

The same restrictions on the rules in RTCG apply here.

While all fundamental rules concerning RTC that have been suggested in the
literature (as far as we know) are derivable in RTCG, as shown in Prop. 2, in
TC ′G this is not the case. There are fundamental properties of the TC operator
which are unprovable in TC ′G.

Proposition 3. The following valid sequents are unprovable in TC ′G:

(TCx,yϕ) (s, t)⇒ ϕ

{
s

x
,
t

y

}
,∃z

(
(TCx,yϕ) (s, z) ∧ ϕ

{
z

x
,
t

y

})
(TCx,yϕ) (s, t)⇒ ϕ

{
s

x
,
t

y

}
,∃z

(
ϕ

{
s

x
,
z

y

}
∧ (TCx,yϕ) (z, t)

)
(16)

(TCx,yϕ) (s, t)⇒ ϕ
{ s
x

}
(TCx,yϕ) (s, t)⇒ ϕ

{
t

y

}
(17)

where in (16) z is a fresh variable and in (17) y does not occur free in ϕ
{
s
x

}
in

the left sequent, and x does not occur free in ϕ
{
t
y

}
in the right sequent.

Proof. Suppose the above sequents are derivable in TC ′G. It is easy to see that all
the rules in TC ′G remain valid and derivable in RTCG if we replace the operator
TC with RTC. Hence, the corresponding sequents for RTC are provable in
RTCG. However, they are obviously not valid, since (RTCx,yϕ) (s, s) holds for
all s and ϕ. ut

In general, any sequent which is valid only for the TC operator and not for the
RTC operator will not be derivable in TC ′G. The next natural question is how
should the system TC ′G be altered in order to be able to derive in it all the
basic rules for the TC operator that are used in practice. Recall that one of
the mathematical definitions of the transitive closure of a relation R is the least
transitive relation that contains R. Hence, we generalize TC ′G’s induction rule
in a way that correlates with the minimality requirement in the definition.

Definition 5.
The system TCG is obtained from TC ′G by replacing Rule (15) by:

Γ, ϕ (x, y)⇒ ∆,φ (x, y) Γ, φ
{
u
x ,

v
y

}
, φ
{
v
x ,

w
y

}
⇒ ∆,φ

{
u
x ,

w
y

}
Γ, (TCx,yϕ) (s, t)⇒ ∆,φ

{
s
x ,

t
y

}
(18)

where x, y should not occur free in Γ ∪∆, and u, v, w should not occurr free in
Γ,∆, φ and ϕ.

In what follows, we denote the sequent ψ
{
u
x ,

v
y

}
, ψ
{
v
x ,

w
y

}
⇒ ψ

{
u
x ,

w
y

}
by

Transx,y [ψ]. The next theorem proves that TCG is more adequate for ancestral
logic than TC ′G.

Theorem 1. TCG is an extension TC ′G and all the sequents from Proposition
3 are provable in it.

Proof. (Outline) In TCG Rule (15) is derivable by taking for φ in Rule (18) the
formula ψ (x)→ ψ

{
y
x

}
, for which Transx,y[φ] is clearly provable. To show that

the first sequent in (16) is provable in TCG, take for φ in Rule (18) the formula
ϕ (x, y) ∨ ∃z ((TCx,yϕ) (x, z) ∧ ϕ (z, y)). The provability of the other sequents
from Proposition 3 then easily follows. ut

Proposition 4. In TCG all the TC-counterparts of the rules in Proposition 2
are derivable.

Since each of the two forms of the transitive closure operator can be expressed in
terms of the other, it is interesting to explore the connection between RTCG and

TCG. Let ϕ be a formula in LTC . Define ϕ∗ to be its LRTC-translation by in-
duction as follows: for each formula ϕ in first-order language define ϕ∗ := ϕ, and
define ((TCx,yA) (s, t))

∗ to be the formula: ∃z
(
A∗
{
s
x ,

z
y

}
∧ (RTCx,yA

∗) (z, t)
)
.

Let ψ be a formula in LRTC . Then ψ′ is the formula in LTC defined by induc-
tion as follows: for each formula ψ in first-order language define ψ′ := ψ, and
define ((RTCx,yA) (s, t))

′ to be the formula (TCx,yA
′) (s, t) ∨ s = t. We use the

standard abbreviations: Γ ∗ for {ϕ∗|ϕ ∈ Γ} and Γ ′ for {ϕ′|ϕ ∈ Γ}.
First we show that any theorem of TCG can be translated into a theorem of

RTCG, and vice versa.

Proposition 5. The following holds:

1. `TCG
Γ ⇒ ∆ implies `RTCG

Γ ∗ ⇒ ∆∗.
2. `RTCG

Γ ⇒ ∆ implies `TCG
Γ

′ ⇒ ∆
′
.

Note that neither (ϕ′)
∗ nor (ϕ∗)

′ is syntactically equal to ϕ. For instance, for
ϕ = (TCx,yP (x, y)) (s, t), (ϕ∗)′ is ∃z (P (s, z) ∧ ((TCx,yP (x, y)) (z, t) ∨ z = t)).
However, as the next proposition will show, (ϕ′)∗ and (ϕ∗)

′ are provably equiv-
alent to ϕ.

Proposition 6. The following holds:

1. `TCG
(ϕ∗)

′ ⇒ ϕ and `TCG
ϕ⇒ (ϕ∗)

′.
2. `RTCG

(ϕ′)
∗ ⇒ ϕ and `RTCG

ϕ⇒ (ϕ′)
∗.

Theorem 2. TCG and RTCG are equivalent, i.e. the following holds:

1. `RTCG
Γ ⇒ ∆ iff `RTCG

Γ
′ ⇒ ∆

′
.

2. `TCG
Γ ⇒ ∆ iff `RTCG

Γ ∗ ⇒ ∆∗.

Proof. Follows immediately from Propositions 5 and 6. ut

Next we explore some proof-theoretical properties of the system TCG. A system
is said to be consistent if it does not admit a proof of the absurd, i.e. the empty
sequent. In LK=, as well as in TCG, formulas never disappear, except in cuts (the
only other simplification allowed is contraction, in which a repetition is reduced).
From this follows that there can be no cut-free proof of the empty sequent.
Thus, by proving a weak version of the cut elimination theorem which states cut
admissibility only for proofs ending with the empty sequent, one establishes the
consistency of the system.

In [9] Gentzen proved the consistency of PAG (Gentzen-style system for PA)5
by providing a constructive method for transforming any proof of the empty
sequent into a cut-free proof. A crucial step in the proof is the elimination of
all appearances of PAG’s induction rule from the end-piece of the proof.6 First,
5 It should be noted that Gentzen did not prove full cut elimination for PAG, only
consistency.

6 The end-piece of a proof consists of all the sequents of the proof encountered if
we ascend each path starting from the end-sequent and stop when we arrive to an
operational inference rule. Thus the lower sequent of this inference rule belongs to
the end-piece, but its upper sequents do not.

all free variables which are not used as eigenvariables in the end-piece of the
proof are replaced by constants. Then, any application of the induction rule up
to a specific natural number is replaced by a corresponding number of structural
inference rules. The transformation is done in the following way. Assume that
the following application of PAG’s induction rule appears within an end-piece

.... P

ψ
{
a
x

}
⇒ ψ

{
s(a)
x

}
ψ
{

0
x

}
⇒ ψ

{
t
x

}
where P denotes the sub-proof ending with the sequent ψ

{
a
x

}
⇒ ψ

{
s(a)
x

}
. Since

all free variables were eliminated, t is a closed term and hence there is a term
s(. . . (s(0)) such that⇒ s(. . . (s(0)) = t is provable in PAG without essential cuts
or induction. Therefore, there is also a proof of ψ(s(. . . (s(0))) ⇒ ψ(t) without
essential cuts or induction. Let P (b) be the proof obtained from P by replacing
a by b throughout the proof. Replace any occurrence of the induction rule by

.... P (0)

ψ
{

0
x

}
⇒ ψ

{
s(0)
x

} P (s(0))

ψ
{
s(0)
x

}
⇒ ψ

{
s(s(0))
x

}
ψ
{

0
x

}
⇒ ψ

{
s(s(0))
x

} P (s(s(0)))

ψ
{
s(s(0))
x

}
⇒ ψ

{
s(s(s(0)))

x

}
ψ
{

0
x

}
⇒ ψ

{
s(s(s(0)))

x

}
These consecutive cuts are carried on up to the sequent ψ

{
0
x

}
⇒ ψ

{
s(. . . (s(0))

x

}
.

Then one more cut is used on the sequent ψ(s(. . . (s(0)))⇒ ψ(t) to obtain a proof
of ψ

{
0
x

}
⇒ ψ

{
t
x

}
.

Can a similar method be applied to the TC-induction rule? The problem is
that Gentzen’s transformation of the induction rule uses special features of the
natural numbers that generally do not exist in TCG. To see this, notice that the
induction rule (Rule (18)) entails all instances of PAG’s induction rule by taking
ϕ to be s (x) = y and φ to be ψ (x)→ ψ

{
y
x

}
. However, in the general case ϕ is

an arbitrary formula. Thus, unlike in PAG, we do not have a “built in” measure
for the ϕ-distance between two arbitrary closed terms s and t. The ϕ-path from
s to t is not known apriori. Moreover, it does not have to be unique.

Unfortunately, this generalization of the induction principle renders this stan-
dard method for analyzing PAG inapplicable. Thus, one should look for useful
fragments of TCG in which cuts can be eliminated from proofs of the empty se-
quent. One such fragment can be obtained via restricting TCG’s induction rule
by allowing only ϕ’s of the form y = t, where x is the only free variable in t. In
this way we force a deterministic ϕ-path between any two closed terms, while
keeping the system strong enough for the task of mechanizing mathematics, as
its restricted induction rule still includes that of PAG. Exploring this direction
will be left for further research.

Another proof-theoretical method which arises from Gentzen’s constructive
consistency proofs is the assignment of ordinals to proof systems. In Gentzen’s
method, each system is assigned the least ordinal number needed for its con-
structive consistency proof. This provides a measure for a complexity of a system
which is useful for comparing different proof systems. The constructive consis-
tency proof of PAG entails that the ordinal number of PAG is at most ε0, and
another theorem of Gentzen [10] shows that it is exactly ε0.

Definition 6. The system TCA is obtained by augmenting TCG with the stan-
dard axioms for successor, addition, and multiplication, together with the axiom
characterizing the natural numbers in ancestral logic (Axiom (1)).

Proposition 7. TCA is equivalent to PAG.

Proof. (Outline) TCA is an extension of PAG, since Rule (18) entails all in-
stances of PAG’s induction rule. In [17] it was shown how it is possible, using a
β-function, to encode in PAG finite sequences and thus define the TC operator.
It is easy to see that the system TCA is equivalent to PAG, in the sense that
there are provability preserving translation algorithms between them. ut

Corollary 1. The ordinal number of the system TCA is ε0.

4 Conclusions and Further Research

In this paper we reviewed the expressive power of logics augmented by a transi-
tive closure operator and explored their reasoning potential. This work focused
on working out this potential by presenting effective sound proof systems for
ancestral logic that are strong enough for various mathematical needs. The next
goal is to improve the computational efficiency of these systems, in order to make
them suitable for mechanization.

We believe that ancestral logic should suffice for most of applicable mathe-
matics. Substantiating this claim by creating formal systems based on ancestral
logic and formalizing in them large portions of mathematics, is a further future
work. A promising candidate for serving as the basis for such system is the pred-
icative set theory PZF , presented in [3,4], which resembles ZF and is suitable
for mechanization. The key elements of PZF are that it uses syntactic safety
relations between formulas and sets of variables, and that its underlying logic is
ancestral logic, which makes it possible to provide inductive definitions of rela-
tions and functions. An important criterion for the adequacy of ancestral logic
for the task of formalizing mathematics is the extent to which such formalization
can be done in a natural way, as close as possible to real mathematical practice.

References

1. Alfred V. Aho and Jeffrey D. Ullman. Universality of data retrieval languages.
In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 110–119. ACM, 1979.

2. Arnon Avron. Transitive closure and the mechanization of mathematics. In
Fairouz D. Kamareddine, editor, Thirty Five Years of Automating Mathematics,
volume 28 of Applied Logic Series, pages 149–171. Springer, Netherlands, 2003.

3. Arnon Avron. Formalizing set theory as it is actually used. In Mathematical
Knowledge Management, pages 32–43. Springer, 2004.

4. Arnon Avron. A framework for formalizing set theories based on the use of static
set terms. In Pillars of computer science, pages 87–106. Springer, 2008.

5. Johan Jeuring John A Campbell, Jacques Carette Gabriel Dos Reis, Petr So-
jka Makarius Wenzel, and Volker Sorge. Intelligent computer mathematics. 2008.

6. Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland, J. F. Cre-
mer, R. W. Harper, Douglas J. Howe, Todd B. Knoblock, N. P. Mendler, Prakash
Panangaden, James T. Sasaki, and Scott F. Smith. Implementing mathematics
with the Nuprl proof development system. Prentice Hall, 1986.

7. Heinz-Dieter Ebbinghaus, Jörg Flum, and Hans-Dieter Ebbinghaus. Finite Model
Theory, volume 2. Springer, 1995.

8. Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable
sets. 1974.

9. Gerhard Gentzen. Die widerspruchsfreiheit der reinen zahlentheorie. Mathematis-
che Annalen, 112(1):493–565, 1936.

10. Gerhard Gentzen. Die gegenwärtige lage in der mathematischen grundlagen-
forschung. neue fassung des widerspruchsfreiheitsbeweises für die reine zahlenthe-
orie. Bull. Amer. Math. Soc. 45, 1939.

11. Fairouz D. Kamareddine. Thirty five years of automating mathematics, volume 28.
Springer, 2003.

12. Richard Milton Martin. A homogeneous system for formal logic. The Journal of
Symbolic Logic, 8(1):1–23, 1943.

13. Richard Milton Martin. A note on nominalism and recursive functions. The Journal
of Symbolic Logic, 14(1):27–31, 1949.

14. John Myhill. A derivation of number theory from ancestral theory. The Journal
of Symbolic Logic, 17(3):pp. 192–197, 1952.

15. Piotr Rudnicki. An overview of the mizar project. In Proceedings of the 1992
Workshop on Types for Proofs and Programs, pages 311–330, 1992.

16. Stewart Shapiro. Foundations without Foundationalism: A Case for Second-Order
Logic: A Case for Second-Order Logic. Oxford University Press, 1991.

17. Peter Smith. Ancestral arithmetic and isaacson’s thesis. Analysis, 68(297):1–10,
2008.

Appendix

In what follows, for readability, we shall not distinguish between the sequents
ϕ ∧ ψ, Γ ⇒ ∆ and ϕ,ψ, Γ ⇒ ∆, or Γ ⇒ ∆,ϕ ∨ ψ and Γ ⇒ ∆,ϕ, ψ, as they are
provable from one another.

Proof of Proposition 2:
– The first rule in (6):

Γ ⇒ ∆,ϕ
{

s
x
, r
y

}
Γ ⇒ ∆, (RTCx,yϕ) (s, r)

(3)
Γ ⇒ ∆, (RTCx,yϕ) (r, t)

Γ ⇒ ∆, (RTCx,yϕ) (s, t)
(4)

The proof of the second rule in (6) is analogous.
– The first rule in (7): Consider the following proof, P1:

⇒ (RTCx,yϕ) (y, y)

s = y ⇒ (RTCx,yϕ) (s, y) ϕ
{

y
x
, z
y

}
⇒ ϕ

{
y
x
, z
y

}
s = y, ϕ

{
y
x
, z
y

}
⇒ (RTCx,yϕ) (s, y) ∧ ϕ

{
y
x
, z
y

}
s = y, ϕ

{
y
x
, z
y

}
⇒ ∃w

(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x
, z
y

})
The sequent (RTCx,yϕ) (s, w) , ϕ

{
w
x

}
⇒ (RTCx,yϕ) (s, y) is provable in RTCG

using (6). Thus, by applying standard LK= rules we can construct a proof, P2, of
∃w
(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x

})
, ϕ
{

y
x
, z
y

}
⇒ ∃w

(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x
, z
y

})
.

Denote by A (y) the formula ∃w
(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x

})
∨ s = y. From

P1 and P2 we obtain a proof of the sequent A (y) , ϕ
{
y
x ,

z
y

}
⇒ A

{
z
y

}
, from

which, using Rule (5), we deduce A
{
s
y

}
, (RTCx,yϕ) (s, t) ⇒ A

{
t
y

}
. Since

⇒ A
{
s
y

}
is derivable from the equality axiom, applying a cut on it results

in the desired end-sequent. The proof of the second rule in (7) is symmetric.
– The left rule in (8): The sequent ϕ (x, y) , (RTCy,xϕ) (x, s)⇒ (RTCy,xϕ) (y, s)

is provable in RTCG using (6). Thus, we can construct the following proof:

ϕ
{

z
y ,

s
x

}
⇒ ϕ

{
z
y ,

s
x

}
ϕ
{

z
y ,

s
x

}
⇒ (RTCy,xϕ) (z, s)

(3) ϕ (x, y) , (RTCy,xϕ) (x, s)⇒ (RTCy,xϕ) (y, s)

(RTCx,yϕ) (z, t) , (RTCy,xϕ) (z, s)⇒ (RTCy,xϕ) (t, s)
(5)

ϕ
{

s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)⇒ (RTCy,xϕ) (t, s)

∃z
(
ϕ
{

s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
⇒ (RTCy,xϕ) (t, s)

The sequent (RTCx,yϕ) (s, t) ⇒ s = t,∃z
(
ϕ
{
s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
is

provable in RTCG using Rule (7) and s = t ⇒ (RTCy,xϕ) (t, s) is provable
using Axiom (2). From this, by cuts, we obtain a proof of (RTCx,yϕ) (s, t)⇒
(RTCy,xϕ) (t, s). The proof of the right rule is symmetric.

– The left rule in (9): In RTCG the sequent s = t⇒
(
RTCu,vϕ

{
u
x ,

v
y

})
(s, t)

is provable. By a method similar to the one used in the proof of (8) we get the
provability of ∃z

(
(RTCx,yϕ) (s, z) ∧ ϕ

{
z
x ,

t
y

})
⇒
(
RTCu,vϕ

{
u
x ,

v
y

})
(s, t).

Applying cuts and Rule (7) results in a proof of the sequent (RTCx,yϕ) (s, t)⇒(
RTCu,vϕ

{
u
x ,

v
y

})
(s, t). The proof of the right rule is symmetric.

– Rule (10): Consider the following two proofs:

ϕ⇒ ψ

ϕ
{

s
x
, z
y

}
⇒ ψ

{
s
x
, z
y

}
⇒ (RTCx,yψ) (z, z)

ϕ
{

s
x
, z
y

}
⇒ (RTCx,yψ) (s, z)

(6)

(RTCx,yψ) (s, z)⇒ (RTCx,yψ) (s, z)

ϕ⇒ ψ

ϕ
{

z
x
, u
y

}
⇒ ψ

{
z
x
, u
y

}
(RTCx,yψ) (s, z) , ϕ

{
z
x
, u
y

}
⇒ (RTCx,yψ) (s, u)

(6)

(RTCx,yψ) (s, z) , (RTCx,yϕ) (z, t)⇒ (RTCx,yψ) (s, t)
(5)

From the above proofs we can deduce ∃z
(
ϕ
{
s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
⇒

(RTCx,yψ) (s, t). Clearly, the sequent s = t ⇒ (RTCy,xψ) (s, t) is prov-
able in RTCG using Axiom (2). Using Rule (7) we get (RTCx,yϕ) (s, t) ⇒
s = t,∃z

(
ϕ
{
s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
, and two cuts result in a proof of

(RTCx,yϕ) (s, t)⇒ (RTCx,yψ) (s, t).
– Rule (11): Rule (4) entails the existence of a proof in RTCG of the sequent

(RTCx,yϕ) (s, u) , (RTCx,yϕ) (u, v)⇒ (RTCx,yϕ) (s, v). By Rule (5) we get a
proof of (RTCx,yϕ) (s, s) , (RTCu,v (RTCx,yϕ) (u, v)) (s, t)⇒ (RTCx,yϕ) (s, t).
A cut on the axiom ⇒ (RTCx,yϕ) (s, s) results in the desired proof.

– The left rule in (12): From ϕ
{
s
x

}
⇒, by standard LK= rules, we can derive

∃z
(
ϕ
{
s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
⇒. By Rule (7) we have (RTCx,yϕ) (s, t)⇒

s = t,∃z
(
ϕ
{
s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
. Thus, a cut results in a proof of

(RTCx,yϕ) (s, t)⇒ s = t. The proof of the right rule in (12) is analogous.
ut

Proof of Theorem 1:
Clearly Transx,y[ψ (x)→ ψ

{
y
x

}
] is provable. Thus, we derive Rule (15) by:

ψ (x) , ϕ (x, y)⇒ ψ
{

y
x

}
ϕ (x, y)⇒ ψ (x)→ ψ

{
y
x

}
Transx,y[ψ (x)→ ψ

{
y
x

}
]

(TCx,yϕ) (s, t)⇒ ψ
{

s
x

}
→ ψ

{
t
x

} (18)

ψ
{

s
x

}
, (TCx,yϕ) (s, t)⇒ ψ

{
t
x

}
To see that the first sequent in (16) is provable in TCG, take φ to be ϕ (x, y) ∨
∃z ((TCx,yϕ) (x, z) ∧ ϕ (z, y)). For any two terms r1, r2, denote by Ar1,r2 the for-
mula ∃z ((TCx,yϕ) (r1, z) ∧ ϕ (z, r2)). Clearly, ϕ (x, y)⇒ ϕ (x, y) ∨ Ax,y is prov-
able in TCG. We show that Transx,y [ϕ (x, y) ∨Ax,y] is also provable. Observe
the following sub-proof:
(TCx,yϕ) (u, v) , (TCx,yϕ) (v, a)⇒ (TCx,yϕ) (u, a) (TCx,yϕ) (u, a) , ϕ (a,w)⇒ Au,w

(TCx,yϕ) (u, v) , (TCx,yϕ) (v, a) ∧ ϕ (a,w)⇒ Au,w

(TCx,yϕ) (u, v) , Av,w ⇒ Au,w

It is easy to see that the sequent (TCx,yϕ) (u, v) , ϕ (v, w)⇒ Au,w is provable in
TCG, so we can obtain a proof of the sequent (TCx,yϕ) (u, v) , ϕ (v, w)∨Av,w ⇒
ϕ (u,w) ∨ Au,w. The sequent ϕ (u, v) ∨ Au,v ⇒ (TCx,yϕ) (u, v) is also provable
in TCG, hence, using a cut we get a proof of φ (u, v) , φ (v, w) ⇒ φ (u,w). Now
we can construct the following derivation:

ϕ (x, y)⇒ ϕ (x, y) ∨ ∃z ((TCx,yϕ) (x, z) ∧ ϕ (z, y)) Transx,y [φ]

(TCx,yϕ) (s, t)⇒ ϕ
{

s
x
, t
y

}
, ∃z ((TCx,yϕ) (s, z) ∧ ϕ (z, t))

(18)

The proof of the second sequent in (16) is similar. To see that the sequents in (17)
are provable, notice that both ϕ

{
s
x ,

t
y

}
∨∃z ((TCx,yϕ) (s, z) ∧ ϕ (z, t))⇒ ϕ

{
t
y

}
and ϕ

{
s
x ,

t
y

}
∨ ∃w (ϕ (s, z) ∧ (TCx,yϕ) (z, t)) ⇒ ϕ

{
s
x

}
are provable in TCG.

From this, using (16) and cuts, we obtain the desired proofs. ut

Proof of Proposition 5:

Lemma 1. The following holds:

–
(
ϕ
{
s
x ,

t
y

})∗
= ϕ∗

{
s
x ,

t
y

}
and

(
ϕ
{
s
x ,

t
y

})′
= ϕ′

{
s
x ,

t
y

}
.

– (¬ϕ)∗ = ¬ϕ∗ and (¬ϕ)′ = ¬ϕ′.
– (ϕ ◦ ψ)∗ = ϕ∗ ◦ ψ∗ and (ϕ ◦ ψ)′ = ϕ′ ◦ ψ′, where ◦ ∈ {∧,∨,→}.
– (Qxϕ)

∗
= Qxϕ∗ and (Qxϕ)

′
= Qxϕ′, where Q ∈ {∀,∃}.

The proofs of (1) and (2) are carried out by induction, we state here only the
cases concerning the TC and RTC operators.

– Rule (13): By standard LK= rules derive from ⇒ ϕ∗
{
s
x ,

t
y

}
and the axiom

⇒ (RTCx,yϕ
∗) (t, t) the sequent ⇒ ∃z

(
ϕ∗
{
s
x ,

z
y

}
∧ (RTCx,yϕ

∗) (z, t)
)
.

– Rule (14): Rule (6) entails the existence of a proof in RTCG of the se-
quent ∃z

(
ϕ∗
{
r
x ,

z
y

}
∧ (RTCx,yϕ

∗) (z, t)
)
⇒ (RTCx,yϕ

∗) (r, t). A cut on

the hypothesis ⇒ ∃z
(
ϕ∗
{
r
x ,

z
y

}
∧ (RTCx,yϕ

∗) (z, t)
)

results in a proof of
the sequent ⇒ (RTCx,yϕ

∗) (r, t). Applying Rule (4) on ⇒ (RTCx,yϕ
∗) (r, t)

and the axiom (RTCx,yϕ
∗) (z, r) ⇒ (RTCx,yϕ

∗) (z, r) results in a proof of
(RTCx,yϕ

∗) (z, r) ⇒ (RTCx,yϕ
∗) (z, t). By standard LK= rules we derive

∃z
(
ϕ∗
{
s
x ,

z
y

}
∧ (RTCx,yϕ

∗) (z, r)
)
⇒ ∃z

(
ϕ∗
{
s
x ,

z
y

}
∧ (RTCx,yϕ

∗) (z, t)
)
.

The desired sequent is now obtained by one more cut on the second hypoth-
esis ⇒ ∃z

(
ϕ∗
{
s
x ,

z
y

}
∧ (RTCx,yϕ

∗) (z, r)
)
.

– Rule (18): From Transx,y [φ
∗] we can deduce φ∗ (s, x) , φ∗ (x, y)⇒ φ∗ (s, y).

Using a cut on ϕ∗ (x, y) ⇒ φ∗ (x, y) we get φ∗ (s, x) , ϕ∗ (x, y) ⇒ φ∗ (s, y).
Applying Rule (5) results in φ∗ (s, z) , (RTCx,yϕ∗) (z, t)⇒ φ∗ (s, t). Using a
cut on ϕ∗ (s, z)⇒ φ∗ (s, z) we get the sequent ϕ∗ (s, z) , (RTCx,yϕ∗) (z, t)⇒
φ∗ (s, t), from which ∃z (ϕ∗ (s, z) ∧ (RTCx,yϕ

∗) (z, t)) ⇒ φ∗ (s, t) is easily
derivable.

– Axiom (2): The translation of the axiom is⇒ (TCx,yϕ
′) (s, s)∨ s = s, which

is easily derivable from the equality axioms.
– Rule (3): Using Rule and introduction of ∨ on the right we can deduce
⇒ (TCx,yϕ

′) (s, t) ∨ s = t from ⇒ ϕ′
{
s
x ,

t
y

}
.

– Rule (4): It is easy to see that from the sequents ⇒ (TCx,yϕ
′) (s, r) , s = r

and ⇒ (TCx,yϕ
′) (r, t) , r = t we can prove ⇒ (TCx,yϕ

′) (s, t) , s = t using
Rule (14) and equality rules.

– Rule (5): As Rule (15) is derivable in TCG, an application of Rule (5) can
be transformed into the following derivation:

ψ′ (x) , ϕ′ (x, y)⇒ ψ′ { y
x

}
ψ′ { s

x

}
, (TCx,yϕ

′) (s, t)⇒ ψ′ { t
x

} (15)
ψ′ { s

x

}
, s = t⇒ ψ′ { t

x

}
ψ′ { s

x

}
, (TCx,yϕ

′) (s, t) ∨ s = t⇒ ψ′ { t
x

}
ut

Proof of Proposition 6:
If ϕ does not contain the TC or RTC operator, then (ϕ′)

∗ and (ϕ∗)
′
are syn-

tactically equal to ϕ, hence provably equivalent to it.
For (1) assume that ϕ := (RTCx,yA) (s, t). By the induction hypothesis

we have `RTCG
(A′)

∗ ⇒ A, thus by (10) the sequent
(
RTCx,y (A

′)
∗)

(s, t) ⇒
(RTCx,yA) (s, t) is also provable in RTCG. It is easy to check that the sequent
∃z
(
(A′)

∗
{
s
x ,

z
y

}
∧RTCx,y (A′)∗ (z, t)

)
∨ s = t⇒

(
RTCx,y (A

′)
∗)

(s, t) is prov-
able in RTCG (using (6) and (2)). A cut on the last two sequents results in
a proof of ∃z

(
(A′)

∗
{
s
x ,

z
y

}
∧RTCx,y (A′)∗ (z, t)

)
∨ s = t ⇒ (RTCx,yA) (s, t).

For the converse, denote ∃z
(
(A′)

∗
{
u
x ,

z
y

}
∧RTCx,y (A′)∗ (z, w)

)
∨ s = t by

ψ (notice that (ϕ′)
∗ is ψ

{
s
u ,

t
w

}
). It is easy to see that ψ

{
s
u ,

x
w

}
, (A′)

∗ ⇒
ψ
{
s
u ,

y
w

}
is provable in RTCG. Applying Rule (5) results in a proof of the se-

quent ψ
{
s
u ,

s
w

}
,
(
RTCx,y (A

′)
∗)

(s, t) ⇒ ψ
{
s
u ,

t
w

}
. The sequent ⇒ ψ

{
s
u ,

s
w

}
is clearly provable using the equality axiom, thus, a cut entails a proof of the
sequent

(
RTCx,y (A

′)
∗)

(s, t) ⇒ (ϕ′)
∗. As before, by the induction hypothesis

we have that `RTCG
A ⇒ (A′)

∗, so by (10) the sequent (RTCx,yA) (s, t) ⇒(
RTCx,y (A

′)
∗)

(s, t) is also provable in RTCG, and by one cut we obtain a
proof of (RTCx,yA) (s, t)⇒ (ϕ′)

∗.
For (2) assume that ϕ := (TCx,yA) (s, t). It is easy to check that the se-

quent ∃z
(
(A∗)

′
{
s
x ,

z
y

}
∧
(
TCx,y (A

∗)
′
(z, t) ∨ z = t

))
⇒
(
TCx,y (A

∗)
′)
(s, t) is

provable in TCG. By the induction hypothesis we have that `TCG
(A∗)

′ ⇒ A, so
by the TC-counterpart of (10) the sequent

(
TCx,y (A

∗)
′)
(s, t)⇒ (TCx,yA) (s, t)

is also provable in TCG. Now, applying a cut results in a proof of the sequent
∃z
(
(A∗)

′
{
s
x ,

z
y

}
∧
(
TCx,y (A

∗)
′
(z, t) ∨ z = t

))
⇒ (TCx,yA) (s, t). For the con-

verse, notice that the derivability of (16) in TCG entails the provability of(
TCx,y (A

∗)
′)
(s, t) ⇒ (A∗)

′
{
s
x ,

t
y

}
∨ ∃z

(
(A∗)

′
{
s
x ,

z
y

}
∧
(
TCx,y (A

∗)
′)
(z, t)

)
.

Clearly, the sequent (A∗)
′
{
s
x ,

t
y

}
⇒ ∃z

(
(A∗)

′
{
s
x ,

z
y

}
∧ z = t

)
is provable in

TCG, and again, using the induction hypothesis on A together with the TC-
counterpart of (10) we get that (TCx,yA) (s, t)⇒

(
TCx,y (A

∗)
′)
(s, t) is provable

in TCG. Applying cuts results in a proof of the sequent (TCx,yA) (s, t)⇒ (ϕ∗)
′.
ut

