
Completeness for Ancestral Logic via a
Computationally-Meaningful Semantics

Liron Cohen

Cornell University

Abstract. First-order logic (FOL) is evidently insufficient for the many
applications of logic in computer science, mainly due to its inability to
provide inductive definitions. Therefore, only an extension of FOL which
allows finitary inductive definitions can be used as a framework for auto-
mated reasoning. The minimal logic that is suitable for this goal is An-
cestral Logic (AL), which is an extension of FOL by a transitive closure
operator. In order for AL to be able to serve as a reasonable (and better)
substitute to the use of FOL in computer science, it is crucial to develop
adequate, user-friendly proof systems for it. While the expressiveness of
AL renders any effective proof system for it incomplete with respect to
the standard semantics, there are useful approximations. In this paper we
show that such a Gentzen-style approximation is both sound and com-
plete with respect to a natural, computationally-meaningful Henkin-style
semantics for AL.

1 Introduction

In [8] it was forcefully argued that logic plays a central role in computer sci-
ence. Evidence for this claim was provided by listing a variety of applications
of logic in different areas in computer science, such as descriptive complexity,
database query languages, program verification and more. However, when exam-
ining this list of applications, it turns out that first-order logic (FOL), which is
the logic usually associated with ‘logic’, does not actually suffice for any of the
mentioned applications.1 Evidently, extensions of FOL are needed in almost all
of the examples given in [8]:

– The characterization of complexity classes which is done in descriptive com-
plexity always uses logics that are more expressive than FOL, such as second-
order logic (SOL), or logics which are intermediate between FOL and SOL.

– Verification of programs involve inductive arguments which are not a part
of the logical machinery of FOL.

– [8] only mentioned query languages which are directly based on FOL, like
SQL. However, its poor expressive power is the reason that the SQL 3 (1999)

1 Actually, at this point we are only referring to the formal languages used in the
applications, ignoring (for the time being) other essential components of the notion
of a ‘logic’, like the corresponding consequence relation.

standard added a WITH RECURSIVE construct which allows transitive clo-
sures to be computed inside the query processor, and by now such a construct
is implemented also in IBM DB2, Microsoft SQL Server, and PostgreSQL.
Datalog too implements transitive closure computations.

– Not only do type theories obviously go beyond FOL, but even their pre-
sentation and description cannot be done in FOL, since their introduction
makes a massive use of inductive definitions of typing judgments.

– Most applications of model-checking rely on the notion of reachability, which
is not first-order definable. It is noted in [18] that “In all interesting appli-
cations of model-checking, reachability properties have to be checked, which
are not expressible in the FOL-signature of labeled graphs (transition sys-
tems)”.

– A crucial notion for reasoning about knowledge is that of common knowledge.
This notion is inductively defined in terms of the basic knowledge opera-
tors. However, this definition is not expressible in FOL and so is usually
introduced by brute force.

All these examples (as well as many others) reveal that what FOL is lacking is
the ability to provide inductive definitions. More particularly, the notion of the
transitive closure of a given binary relation seems to be the key necessary com-
ponent which is not expressible in FOL. In fact, because of this inability, FOL
cannot even serve as its own meta-logic, since all its basic syntactic categories
(such as terms, formulas, and formal derivations of formulas) are introduced via
inductive definitions. Hence, only some extension of FOL which allows finitary
inductive definitions ([5]) can be used as a framework for automated reasoning.
While SOL clearly enjoys this property, it does not seem satisfactory that deal-
ing with basic inductive definitions requires using the strong notions involved in
SOL, such as quantifying over all subsets of infinite sets. Full SOL also has many
disadvantages, among which are its doubtful semantics (as it is based on debat-
able ontological commitments), and what is more, the fact that it is difficult to
deal with from a proof-theoretical point of view.

In [1,2] it was shown that the minimal framework that can be used for the
above mentioned goal is Ancestral Logic, AL (which is also known in the lit-
erature as TC-logic). This is the logic obtained from FOL by the addition of
a transitive closure operator. Although several other logics which are interme-
diate between FOL and SOL have been suggested in the literature (such as:
weak second-order logic, ω-logic, logics with a “cardinality quantifier”, logics
with Henkin quantifiers, etc.), we strongly believe that AL should be taken as
the basic logic which underlies most applications of logic in computer science.
Its advantages include: being useful in the finite cases2, having intuitive formal

2 A great deal of attention has been given to AL in the area of finite model theory, and
in related areas of computer science, like complexity classes (see, e.g., [4]). However,
not much has been done so far about it in the context of arbitrary structures, or
from a proof theoretical point-of-view.

2

proof systems, and entering very naturally in computer science applications3.
Another important advantage of AL is the simplicity of the transitive closure
notion. Anyone, even with no mathematical background whatsoever, can easily
grasp the concept of the ancestor of a given person (or, in other words, the idea
of the transitive closure of a certain binary relation).

In order for AL to be used as the foundational logic in computer science
applications, its theory must first be developed to the point it can serve as a
reasonable (and in many cases, better) substitute for the use of FOL (or higher-
order logics). Since our goal is to explore the use of this logic in such applications,
the emphasis should be on the construction of adequate, user-friendly formal
systems for AL. Due to the expressiveness of AL, there can be no sound and
complete effective proof system for it (see, e.g., [15]). Instead, one should look for
useful approximations (like in the case of SOL). In [1,2] a Gentzen-style proof
system for AL was presented and its proof-theoretical properties were explored.4
It was shown to be natural and effective, as well as sound with respect to the
intended semantics. In this paper we provide further evidence for the usefulness
of the system by proving that it is both sound and complete with respect to a
generalized Henkin-style semantics.5 This semantics for AL is based on the one
used for the completeness proof for SOL given in [9].

The rest of this paper is organized as follows: In Section 2 the formal definition
of the reflexive transitive closure operator and ancestral logic are given. Then,
some of the most important model-theoretic properties of ancestral logic are
presented. Section 3 provides a natural Gentzen-style system which is adequate
for ancestral logic in the sense that it is sound with respect to the standard se-
mantics, and captures the properties that govern the transitive closure operator.
Section 4 contains the main result of the paper: a completeness theorem for the
proof system for AL with respect to a natural Henkin-style semantics. Finally,
in Section 5 we conclude with some remarks and ideas for further research.

2 The Language and its Semantics

The essential idea in embedding the general concept of the transitive closure
operator into a logical framework is that one may treat a formula with two
(distinct) free variables as a definition of a binary relation. Below is the formal
definition of first-order logic augmented by a transitive closure operator, and its
semantics. In this paper (following suggestions made in, e.g., [12,13,14]) we take
the reflexive form of the transitive closure operator as the primitive notion. In
3 To demonstrate one such application of AL in computer science, in [3] a constructive

version of AL was shown to subsume Kleene algebra with tests [11] (as the reflex-
ive transitive closure operator is essentially Kleene’s star operator), while offering
much more expressive power. This demonstrates that AL can serve as a natural
programming logic for specifying, developing and reasoning about programs.

4 In fact, [2] presented several proof systems for different variations of AL, and the
connection between them was investigated.

5 To be precise, we take here an equivalent variant of a system presented in [2].

3

[2] it was shown that the two forms of the operator, the reflexive one and the
non-reflexive one, are equivalent in the presence of equality.

Throughout the paper we use the following standard notations:

– Fv (φ) for the set of free variable in the formula φ.
– v [x := a] for the x-variant of the assignment v which assigns a to x.
– φ

{
t1
x1
, ..., tn

xn

}
for the result of simultaneously substituting ti for the free

occurrences of xi in φ (i = 1, ..., n).

Definition 1. Let σ be some first-order signature, and let L be the correspond-
ing first-order language. The language LRTC is obtained from L by the addition
of the reflexive transitive closure operator (RTC), together with the following
clause concerning the definition of a formula:

– (RTCx,yφ) (s, t) is a formula in LRTC for any formula φ in LRTC , distinct
variables x, y, and terms s, t.

The free occurrences of x and y in φ become bound in this formula.

Note that φ in the above definition can be any formula in LRTC . That is,
it may contain free variables other than x, y (treated as parameters), or it may
not contain x, y at all. Also, φ can have a RTC-subformula, i.e. nesting of the
RTC operator are allowed.

The intended meaning of a formula of the form (RTCx,yφ) (s, t) is the “infinite
disjunction”:

s = t ∨ φ{ s
x
,
t

y
} ∨ ∃w1(φ{

s

x
,
w1

y
}) ∧ φ{w1

x
,
t

y
})∨

∃w1∃w2(φ{
s

x
,
w1

y
} ∧ φ{w1

x
,
w2

y
} ∧ φ{w2

x
,
t

y
}) ∨ . . .

where w1, w2, ... are all fresh variables.

Definition 2. Let M be a structure for LRTC , and v an assignment in M .
Ancestral logic (AL) is semantically defined as classical first-order logic, with
the following additional clause concerning the satisfaction relation:

– The pair ⟨M, v⟩ is said to satisfy the formula (RTCx,yφ) (s, t) (denoted by
M, v |= (RTCx,yφ) (s, t)) if v (s) = v (t), or there exist a0, ..., an ∈ D (n > 0)
such that v (s) = a0, v (t) = an, and M, v[x := ai, y := ai+1] |= φ for
0 ≤ i ≤ n− 1.

A simple compactness argument shows that the reflexive transitive closure
operator is in general not first-order definable. However, it is definable in second-
order logic by the formula: ∀X ((Xs ∧ ∀x∀y (φ (x, y) ∧Xx→ Xy)) → Xt). There-
fore, ancestral logic is intermediate between first- and second-order logics. An
important indication that the expressive power of ancestral logic captures a very

4

significant and natural fragment of SOL is provided by the fact that AL is equiv-
alent in its expressive power to several other logics between FOL and SOL that
have been suggested and investigated in the literature (such as those mentioned
in the introduction).

The natural numbers can be categorically characterized in AL using only
equality, zero and the successor function (see [2]). This implies that the upward
Löwenheim-Skolem theorem fails for AL, as well as the compactness theorem (see
[15]). Moreover, if addition is added to the language, all recursive functions and
relations are definable in AL (see [1]), and thus the set of valid formulas of AL in
this language is not even arithmetical. Hence AL is inherently incomplete, i.e.,
any formal deductive system which is sound for AL is incomplete. Nevertheless,
as we shall demonstrate, there are very natural formal approximations which are
sound, and seem to encompass all forms of reasoning for this logic that are used
in practice.

3 Formal Proof System for AL

As in the case of SOL, since there can be no sound and complete formal system
for AL, one should instead look for useful approximations. Such approximations
should be:

– natural and effective,
– sound with respect to the intended semantics,
– both sound and complete with respect to some natural generalization of the

intended semantics.

Such equivalent Hilbert-style approximations were suggested already in [12,13,14].
Nevertheless, the use of Hilbert-type systems is impractical, since they are not
suitable for mechanization. A better, computationally-oriented approach would
be to explore Gentzen-style systems for AL. This was done in [2], and we here
review the system and its main properties.

Definition 3. Let G be a Gentzen-style system (see, e.g., [6]).

– A sequent s is said to be provable from a set of sequents S in G, denoted by
S ⊢G s, if there exists a derivation in G of s from S.

– A formula φ is said to be provable from a set of formulas T in G, denoted
by T ⊢G φ, if there is a derivation in G of ⇒ φ from the set {⇒ ψ |ψ ∈ T}.

In what follows the letters Γ,∆ represent finite (possibly empty) multisets of
formulas, φ,ψ arbitrary formulas, x, y, z, u, v variables, and r, s, t terms.

Let LK be the Gentzen-style system for classical first-order logic [6,17], in-
cluding the substitution rule (though it was not a part of the original system).

Definition 4. The system ALG for LRTC is defined by adding to LK the fol-
lowing axiom:

Γ ⇒ ∆, (RTCx,yφ) (s, s) (1)

5

and the following inference rules:

Γ ⇒ ∆, (RTCx,yφ) (s, r) Γ ⇒ ∆,φ
{

r
x ,

t
y

}
Γ ⇒ ∆, (RTCx,yφ) (s, t) (2)

Γ, ψ (x) , φ (x, y) ⇒ ∆,ψ
{

y
x

}
Γ, ψ

{
s
x

}
, (RTCx,yφ) (s, t) ⇒ ∆,ψ

{
t
x

}
(3)

In all the rules we assume that the terms which are substituted are free for
substitution, and that no forbidden capturing occurs. In Rule (3) x should not
occur free in Γ and ∆, and y should not occur free in Γ,∆ and ψ.

For languages with equality, the system AL=
G is obtained from ALG by the

addition of standard equality axioms (see, e.g., [17]).

Rule (3) is a generalized induction principle. It states that if t is a φ-
descendant of s or equal to it, then if s has some hereditary property which
is passed down from one object to another if they are φ-related, then t also has
that property. In the case of arithmetic this rule captures the induction rule of
Peano’s Arithmetics PA (see [2]).6

The systemALG is adequate for handling theRTC operator, in the sense that
it is sound and it gives the RTC operator the intended meaning of the reflexive
transitive closure operator. Furthermore, all fundamental rules concerning the
RTC operator that have been suggested in the literature (as far as we know)
are derivable in it. The Lemma below provides some examples.

Lemma 5. The following rules are derivable in ALG:

Γ ⇒ ∆, (RTCx,yφ) (s, r) Γ ⇒ ∆, (RTCx,yφ) (r, t)

Γ ⇒ ∆, (RTCx,yφ) (s, t)
(4)

Γ, φ⇒ ∆,ψ

Γ, (RTCx,yφ) (s, t) ⇒ ∆, (RTCx,yψ) (s, t)
(5)

(RTCx,yφ) (s, t) , Γ ⇒ ∆

(RTCu,v (RTCx,yφ) (u, v)) (s, t) , Γ ⇒ ∆
(6)

Γ ⇒ ∆, (RTCx,yφ) (s, t)

Γ ⇒ ∆, (RTCy,xφ) (t, s)

(RTCx,yφ) (s, t) , Γ ⇒ ∆

(RTCy,xφ) (t, s) , Γ ⇒ ∆
(7)

In (5) x, y should not occur free in Γ and ∆, and in (6) u, v should not occur
free in φ.

6 In fact, it was shown in [2] that in the case of arithmetics the ordinal number of
ALG is ε0, like in the case of PA.

6

4 Henkin-Style Completeness

Though ALG cannot be complete for its intended semantics, it can be shown
to be complete for a more liberal yet natural semantics, in the spirit of the
Henkin semantics used for the completeness of SOL (see, e.g. [9,15]). Thus, in
this section we introduce a similar Henkin-style semantic characterizations for
LRTC , and prove the completeness of ALG with respect to it. This will establish
that ALG indeed meets also the third criterion of a useful approximation for AL
given at the beginning of Section 3.
First we recall the concepts of Henkin structures. A σ-Henkin structure is a
standard structure together with a subset of the power-set of its domain (called
its set of admissible subsets) which is closed under parametric definability.

Definition 6. Let σ be a first-order signature. A σ-Henkin structure M is a
triple ⟨D, I,D′⟩, such that:

– ⟨D, I⟩ is a standard structure for σ (i.e., D is a non-empty domain and I is
an interpretation function on σ in D)

– D′ ⊆ P (D) such that for each formula φ in σ, and assignment v in M7:

{a ∈ D |M, v [x := a] |= φ} ∈ D′

In case D′ = P (D), the σ-Henkin structure is called a standard structure.

Notice that in finite structures every subset of the domain is parametrically
definable, hence non-standard σ-Henkin structures are necessarily infinite.

It should be noted that the notion of “non-standard” structures is commonly
used in mathematical logic, but in a different sense. There are two ways in
which a σ-Henkin structure can be non-standard. The “standard way” for it to
be non-standard is by having a non-standard first-order part ⟨D, I⟩ (in which
case D′ must necessarily be non-standard). However, a σ-Henkin structure can
be non-standard even in case its first-order part is standard, simply by having
D′ ⫋ P (D). The latter is what we here mean by a non-standard σ-Henkin
structure.

Definition 7. Let LRTC be the language based on the signature σ. LRTC for-
mulas are interpreted in σ-Henkin structures as in standard structures, except
for the following clause:

– M, v |= (RTCx,yφ) (s, t) if for every A ∈ D′, if v (s) ∈ A and for every
a, b ∈ D: (a ∈ A ∧M, v [x := a, y := b] |= φ) → b ∈ A, then v (t) ∈ A.

Example 8. To give an example of a non-standard σ-Henkin structure, consider
the relational language of arithmetic σ = {0, S,=}, where S stands for the
successor relation (note that we here use equality in the signature). Let M be the
structure whose first-order part is the standard structure of the natural numbers,
and let D′ be the collection of subsets of the natural numbers that are definable
7 An assignment v in M is defined as in the standard semantics.

7

without parameters in the language of AL (i.e. definable by a formula with only
one free variable). A set that is definable relative to definable parameters is
definable without parameters, so D′ is closed under definability. Thus, M is a
σ-Henkin structure which is clearly non-standard as D′ ⫋ P (D). Now, AL has
a categorical characterization of the natural numbers (see, e.g., [1,2,15]), and it
is straightforward to verify that M indeed satisfies all the characterizing axioms.

The next proposition shows that the generalized Henkin-style semantics co-
incides with the standard semantics on standard structures.

Proposition 9. Let M be a standard structure and v an assignment in M .
Then, the followings are equivalent:

1. v (s) = v (t) or there exist a0, ..., an ∈ D (n > 0) such that v (s) = a0, v (t) =
an, and M, v[x := ai, y := ai+1] |= φ for 0 ≤ i ≤ n− 1.

2. for every A ⊆ D, if v (s) ∈ A and for every a, b ∈ D: M, v [x := a, y := b] |=
φ and a ∈ A implies b ∈ A, then v (t) ∈ A.

Proof. Suppose (1). Let A ⊆ D be a set that is closed under φ, and v an
assignment such that v (s) = a0 ∈ A . If v (s) = v (t) we are done. Otherwise,
by induction on the sequence a0, ..., an it is straightforward to prove that v (t) =
an ∈ A. For the converse, assume by contradiction that (1) does not hold. Take
A to be that set which includes v (s) as well as all an ∈ D such that there exist
a0, ..., an−1 ∈ D (n > 0) where v (s) = a0, and M, v[x := ai, y := ai+1] |= φ
for 0 ≤ i ≤ n − 1. By assumption, v (t) /∈ A, which contradicts (2), since A is
obviously φ-closed. ⊓⊔

Before proceeding, a discussion of the value of this type of generalized Henkin
semantics for AL is in order. This semantics originated in the completeness result
for SOL [9]. There, in order to achieve completeness, the semantics of the non
first-order part of the language (the second-order variables) had to weakened.
Similarly, we here form a relaxation of the intended semantics for AL by taking
a more liberal condition for the non first-order part of the language, the RTC
operator. On standard structures, this semantics gives to an RTC-formula its
intended top-down meaning (as in Prop. 9(2)). That is, (RTCx,yφ) (s, t) holds
when any property (represented by A) which is closed under φ and contains
the interpretation of s also contains the interpretation of t. This corresponds
to the standard mathematical definition of the operator as the union of the
identity relation with the intersection over all transitive binary relations that
contain the interpretation of φ (to see this, notice that a ∈ A → b ∈ A may
be considered as a transitive binary relation). Now, this is a strong requirement
which also renders this definition non-constructive (apart from in trivial cases).
The Henkin-style semantics given above relaxes this definition by referring not to
all A ⊆ D, but only to certain ones. The closure condition on Henkin structures
entails that those A’s on which the property should be verified are those which
are definable (with parameters) in the language. This is a definitional approach
to the transitive closure operator which is very much computationally-oriented.

8

The meaning of the transitive closure is what gives AL its inductive power,
which is required for many applications in computer science (as surveyed in
the Introduction). But the inductive power actually needed and used in such
applications is not over arbitrary elements, but over elements which can be
defined.

This generalization of the semantics is what entails the completeness result
for ALG in the sequel. This is because in the induction rule of the formal system
ALG there is an implicit condition that the hereditary property can be defined
by a formula, there denoted by ψ. Actually, this condition holds in any formal
system, and thus is a critical property in any computational framework. In light
of that, the completeness result also suggests that those “standard truths” of
AL which are not provable in ALG hold due to inductive reasoning on some
non-definable (non-computable) set.

Any classical structure M = ⟨D, I⟩ for σ induces a set of σ-Henkin structures
H (M) = {MH = ⟨D, I,D′⟩ |MH is aσ−Henkin structure}. Conversely, each σ-
Henkin structure M corresponds to the classical structure obtained by the for-
getfulness of D′.

Definition 10. Let T ∪ {φ} be a set of formulas in a language based on the
signature σ. We say that T |=H φ if every σ-Henkin model of T is a model of φ.
We say that T |=S φ if every standard model of T is a model of φ.

Proposition 11. Let T ∪ {φ} be a set of formulas. If T |=H φ then T |=S φ.

Proof. Follows from the fact that every standard model for T may be viewed as
a Henkin model. ⊓⊔

We start by showing the completeness of ALG. Therefore in what follows,
unless mentioned otherwise, we assume LRTC does not contain equality.

Theorem 12 (Soundness). Let T ∪{φ} be a set of sentences in LRTC . Then,
T ⊢ALG

φ implies T |=H φ.

Proof. It is straightforward to verify that Axiom (1) and Rule (2) of ALG are
sound with respect to the Henkin-style semantics. For Rule (3) simply take
A := {a ∈ D |M, v [x := a] |= ψ}. Now, A ∈ D′ since σ-Henkin structures are
closed under parametric definability. By the assumptions we have that A is
φ-closed and v (s) ∈ A, which by the semantics of the RTC formula entails
v (t) ∈ A. ⊓⊔

The main result of this section is Theorem 13 below, which we shall prove
using several lemmas and definitions.

Theorem 13 (Completeness). Let T ∪ {φ} be a set of sentences in LRTC .
Then, T |=H φ implies T ⊢ALG

φ.

We prove the completeness theorem using the standard method, showing
that if T ⊬ALG

φ, then T ⊭H φ. First, we extend the language LRTC to a
language L′

RTC by adding to it countably many new constant symbols, c1, c2, ...,
and countably many new monadic predicates, P1, P2, It is easy to see that
T ⊬ALG

φ in the extended language as well.

9

Definition 14. We say that a set of L′
RTC sentences Γ contains Henkin wit-

nesses if the followings hold:

1. if ∃xφ ∈ Γ , then φ
{

c
x

}
∈ Γ for some constant c.

2. if ¬ (RTCx,yφ) (s, t) ∈ Γ , then P (s), ∀x, y (P (x) ∧ φ (x, y) → P (y)), ¬P (t) ∈
Γ for some monadic predicate P .

3. if φ is a formula of L′
RTC with Fv (φ) = {x}, then ∀x (P (x) ↔ φ) ∈ Γ for

some monadic predicate P .

The next Lemma established that the standard method of relational exten-
sion by definitions is conservative.

Lemma 15. Let T be a set of sentences in L′
RTC such that T ⊬ALG

φ, and let θ
be a sentence of the form ∀x (P (x) ↔ ψ), where P is a fresh monadic predicate
(i.e. does not occur in T ∪ {φ,ψ}). Then, T, θ ⊬ALG

φ.

Proof. Suppose by contradiction that there is a proof from T ∪{∀x (P (x) ↔ ψ)}
of φ in ALG, where P is a fresh monadic predicate. First rename all bound
variables in the proof (apart from x in the formula ∀x (P (x) ↔ ψ)) with new
variables not occurring in the proof or in ∀x (P (x) ↔ ψ). Now, replace all the
occurrences of formulas of the form P (t) in the proof by ψ

{
t
x

}
. Then, every

occurrence of ∀x (P (x) ↔ ψ) in the proof becomes an occurrence of ∀x (ψ ↔ ψ),
which of course is provable in ALG. It is straightforward to show that if the
replacement is done on an axiom, then the result is still an axiom of ALG. It
is also easy to verify that all the inference rules apply equally to the formulas
after the replacement. Also notice that since P does not occur in T ∪ {φ},
the replacement procedure applied to a formula in T ∪ {φ} results in the same
formula. Hence, the replacement procedure indeed produces a proof of φ from
T in ALG. This shows that T ⊢ALG

φ, which is a contradiction. ⊓⊔

Lemma 16. Let P be a monadic predicate and θ a formula of L′
RTC . Then:

P (s) ,∀x, y (P (x) ∧ θ (x, y) → P (y)) ,¬P (t) ⊢ALG
¬ (RTCx,yθ) (s, t)

Proof. The claim immediately follows from Rule (3), taking φ (x, y) := θ (x, y)
and ψ (x) := P (x). ⊓⊔

Lemma 17. There exists an extension of T to a set of sentences T ′ in the
language L′

RTC such that:

1. T ′ is a maximal theory in L′
RTC such that T ′ ⊬ALG

φ.
2. T ′ contains Henkin witnesses.

Proof. Fix two enumerations: one of all sentences of L′
RTC : ψ1, ψ2, ...; and one

of all the formulas of L′
RTC with one free variable x: θ1, θ2, Define a sequence

of theories T0, T1, ... inductively in the following way: T0 = T , and for i > 0 Ti
is constructed from Ti−1 as follows:

1. If i = 2n− 1 for some n ∈ N, then:

10

(a) If Ti−1 ∪ {ψn} ⊢ALG
φ, then Ti = Ti−1.

(b) If Ti−1 ∪ {ψn} ̸⊢ALG
φ, then:

i. If ψn is not of the form ∃xψ or ¬ (RTCx,yψ) (s, t), Ti = Ti−1∪{ψn}.
ii. If ψn = ∃xψ, then Ti = Ti−1 ∪

{
ψn, ψ

{ cj
x

}}
, for cj a fresh constant

symbol not in Ti−1.
iii. If ψn = ¬ (RTCx,yψ) (s, t), then Ti = Ti−1 ∪ {ψn, Pj (s) ,¬Pj (t) ,

∀x, y (Pj (x) ∧ ψ (x, y) → Pj (y))}, for Pj a fresh monadic predicate
not in Ti−1.

2. If i = 2n for some n ∈ N, then Ti = Ti−1∪{∀x (Pj (x) ↔ θn)}, for Pj a fresh
monadic predicate not in Ti−1.

We show by induction that for every i ∈ N, Ti ⊬ALG
φ. Lemma 15 entails

that if T2n−1 ̸⊢ALG
φ, then T2n ̸⊢ALG

φ. For i = 2n − 1: Cases (a) and (b i)
are trivial, and Case (b ii) is provable just as in the standard completeness
proof for FOL. Thus, we here prove Case (b iii). Assume by contradiction that
Ti−1,¬ (RTCx,yψ) (s, t) , Pj (s) , ∀x, y.Pj (x)∧ψ (x, y) → Pj (y) ,¬Pj (t) ⊢ALG

φ.
Since Pj (s) ,∀x, y.Pj (x)∧ψ (x, y) → Pj (y) ,¬Pj (t) ⊢ALG

¬ (RTCx,yψ) (s, t), by
Lemma 16 we have Ti−1, Pj (s) ,∀x, y.Pj (x)∧ψ (x, y) → Pj (y) ,¬Pj (t) ⊢ALG

φ.
Now, Pj is a fresh monadic predicate which does not appear in Ti−1 ∪ {φ}.
Therefore, it is straightforward to verify that replacing all occurrences of for-
mulas of the form Pj (r) in the above proof with (RTCx,yψ) (s, r) results in a
proof in ALG of φ from the set Ti−1 ∪ {(RTCx,yψ) (s, s) ,¬ (RTCx,yψ) (s, t) ,
∀x, y. (RTCx,yψ) (s, x) ∧ ψ (x, y) → (RTCx,yψ) (s, y)}. Now, (RTCx,yψ) (s, s) is
an axiom of ALG, and ∀x, y ((RTCx,yψ) (s, x) ∧ ψ (x, y) → (RTCx,yψ) (s, y)) is
provable inALG using Rule (2). Hence, we get that Ti−1,¬ (RTCx,yψ) (s, t) ⊢ALG

φ, which contradicts the original assumption that Ti−1∪{ψi} ̸⊢ALG
φ. Therefore,

Ti ⊬ALG
φ.

Now, take T ′ =
∪∞

i=0 Ti. The construction of T ′ entails that it satisfies the
two requirements of the claim. ⊓⊔

Next we construct a Henkin model for T ′, which does not satisfy φ.

Definition 18. Define M by:

– D = {t | t is a closed term}
– D′ = {{t |P (t) ∈ T ′} |P is amonadic predicate}
– ⟨t1, ..., tn⟩ ∈ I (P) iff P (t1, ..., tn) ∈ T ′

– I (c) = c for a constant symbol c
– I (f) (t1, ..., tn) = f (t1, ..., tn) for a n-ary function symbol f

Notice that D′ = {I (P) |P is amonadic predicate}.

Lemma 19. Let ψ be a formula in L′
RTC . The following holds:

– M, v |= ψ iff M |= ψ
{

v(x1)
x1

, ..., v(xn)
xn

}
, where Fv (ψ) = {x1, ..., xn}.

– T ′ |=H ∀xψ iff T ′ |=H ψ
{

t
x

}
for every closed term t.

11

Lemma 20. M is a σ-Henkin structure.

Proof. The claim follows from the fact that T ′ contains Henkin witnesses of
the third type in Definition 14, i.e., a monadic predicate was introduced for
each parametrically definable subset (using the new constant symbols instead
of the parameters). To see this, let v be an assignment in M , and let ψ be
a formula with Fv (ψ) = {x1, ..., xn}. Then, {a ∈ D |M, v [x1 := a] |= ψ} ={
a ∈ D |M, v [x1 := a] |= ψ

{
v(x2)
x2

, ..., v(xn)
xn

}}
. In T ′ there exists a monadic pred-

icate which forms a Henkin witness for ψ
{

v(x2)
x2

, ..., v(xn)
xn

}
, denote it by Pk (x1).

This entails that
{
a ∈ D |M, v [x1 := a] |= ψ

{
v(x2)
x2

, ..., v(xn)
xn

}}
= I (Pk) ∈ D′.

⊓⊔

Lemma 21. For every sentence θ in L′
RTC : M |= θ iff θ ∈ T ′.

Proof. By induction on θ. The base case follows immediately from the definition
of M . For the connectives and quantifiers the proof is similar to the standard
proof for FOL (using Henkin witnesses for existential formulas). We next prove
the case for θ = (RTCx,yψ) (s, t).
(⇒) : Assume M |= (RTCx,yψ) (s, t). Hence, for every monadic predicate P ,
if for every a, b ∈ D:(a ∈ I (P) ∧M, v [x := a, y := b] |= ψ) → b ∈ I (P) and
I (s) ∈ I (P), then I (t) ∈ I (P). Using the induction hypothesis and the base
case we get that for any monadic predicate P , if P (s) ∈ T ′ and for any two
closed terms a, b, if P (a) ∈ T ′ and ψ (a, b) ∈ T ′ then P (b) ∈ T ′, then P (t) ∈ T ′.
From this we deduce (using Lemma 19) that for any monadic predicate P , if
P (s) ∈ T ′ and ∀x, y (P (x) ∧ ψ (x, y) → P (y)) ∈ T ′, then P (t) ∈ T ′. Assume
by contradiction that (RTCx,yψ) (s, t) /∈ T ′. By the maximality of T ′, we get
that ¬ (RTCx,yψ) (s, t) ∈ T ′. Therefore, T ′ contains Henkin witnesses of the
type P (s), ∀x, y (P (x) ∧ ψ (x, y) → P (y)) and ¬P (t) for some monadic predi-
cate P . But this contradicts the consistency of T ′, since we showed that for any
monadic predicate P , if P (s) ∈ T ′ and ∀x, y (P (x) ∧ ψ (x, y) → P (y)) ∈ T ′,
then P (t) ∈ T ′. Hence we conclude that (RTCx,yψ) (s, t) ∈ T ′.
(⇐) : Assume M ⊭ (RTCx,yψ) (s, t). So, M |= ¬ (RTCx,yψ) (s, t) and there ex-
ists a monadic predicate P such that I (s) ∈ I (P), I (t) /∈ I (P), and for every
a, b ∈ D: (a ∈ I (P) ∧M, v [x := a, y := b] |= ψ) → b ∈ I (P). By the induction
hypothesis and the base case we get that there exists a monadic predicate P such
that P (s) ∈ T ′, P (t) /∈ T ′, and for any two closed terms a, b, if P (a) ∈ T ′ and
ψ (a, b) ∈ T ′ then P (b) ∈ T ′. Therefore, by the maximality of T ′, P (s) ∈ T ′,
¬P (t) ∈ T ′ and ∀x, y (P (x) ∧ ψ (x, y) → P (y)) ∈ T ′ (the latter holds since as-
suming otherwise leads to a contradiction using a Henkin witness for an ex-
istential formulas). This entails, by Lemma 16, T ′ ⊢ALG

¬ (RTCx,yψ) (s, t).
Assuming (RTCx,yψ) (s, t) ∈ T ′ contradicts the consistency of T ′, therefore
(RTCx,yψ) (s, t) /∈ T ′. ⊓⊔

From the above series of definitions and lemmas we can finally prove Theorem
13. Since the original theory T is contained in T ′ and φ /∈ T ′, Lemma 21 entails

12

that the model M constructed in Def. 18 satisfies T , but not φ. Hence, we get
that T ̸|=H φ, which concludes the proof of the Completeness Theorem for ALG.

The completeness of AL=
G is obtained similarly. Soundness of the additional

equality rules is straightforward. The main modification needed in the complete-
ness proof for languages with equality is in the construction of the structure M
(Definition 18). In this case M is obtained by taking the domain D to be the
quotient set on terms under the equivalence relation: t1 ≡ t2 iff t1 = t2 ∈ T ′. The
other components of the definition are then altered straightforwardly, taking the
equivalence class of closed terms instead of the terms themselves (just as in the
standard completeness proof for first-order languages with equality).

It should be noted that in [2] a Gentzen-style proof system for the non-
reflexive transitive closure operator was presented, and it was shown that there
exist provability preserving interpretations between the two logics. Using similar
methods to the ones used here, it is straightforward to provide a generalized
Henkin-style semantics for the non-reflexive transitive closure operator and to
prove that its corresponding proof system is complete with respect to it.

5 Conclusions and Further Research

In this paper we took another step in the development of the theory of AL as
a foundational logical framework for computer science applications. A Henkin-
style semantics for AL was introduced and a natural formal system for AL was
proven to be sound and complete with respect to it. This leads to various open
questions and possible research directions in the exploration of the theory of AL.

One important research task is establishing some form of cut-elimination
theorem for ALG. A non-constructive result might be obtainable using methods
similar to the ones used for SOL in [7,16]. To achieve constructive cut-elimination
result a plausible option is to search for a suitable definition of the notion “sub-
formula” under which some form of analytical cut-elimination can be obtained.
It is clear that the usual definition of a subformula should be revised, exactly
as the straightforward notion of subformula used in propositional languages is
changed on the first-order level, where for example a formula of the form ψ{ t

x}
is considered to be a subformula of ∀xψ, even though it might be much longer
than the latter. Thus the induction rule of ALG satisfies the subformula property
only if we take a formula to be a subformula of every substitution instance of it.

The system ALG is not complete with respect to the intended semantics. It
is not difficult to express its consistency in the language {=, 0, S,+} as a logi-
cally valid (under the standard semantics) sentence ConAL=

G
of AL. By Gödel’s

theorem on consistency proofs, ConAL=
G

is not a theorem of AL=
G. It would be

interesting to find what valid principles of AL (not available in ALG) can be used
to derive it. The completeness result of this paper suggests that those principles
are connected with inductive reasoning over arbitrary (undefinable) sets.

Another interesting task is to determine and explore fragments of AL that are
more convenient to work with, but are still sufficient for at least some concrete

13

applications. An example of such a fragment may be the one which corresponds
to the use of the deterministic transitive closure operator (see, e.g., [10]). Another
option worth investigating is to restrict the induction rule by allowing only φ’s
of the form y = t, where Fv (t) = {x}. Implicitly, this is the fragment of AL
used in Peano’s Arithmetics.

In [15] it is noted that Craig interpolation theorem and Beth definability
theorem fail for logics in which the notion of finiteness can be expressed. Thus,
a future research task is to find appropriate AL counterparts (whenever such
exist) to central model-theoretic properties of FOL such as these.

Acknowledgments

This research was supported by: Ministry of Science, Technology and Space, Is-
rael; Fulbright Post-doctoral Scholar program; Weizmann Institute of Science –
National Postdoctoral Award Program for Advancing Women in Science; Eric
and Wendy Schmidt Postdoctoral Award program for Women in Mathematical
and Computing Sciences; and Cornell University PRL Group. The author is in-
debt to A. Avron for his invaluable comments and expertise that greatly assisted
this research.

References

1. A. Avron. Transitive closure and the mechanization of mathematics. In F. D.
Kamareddine, editor, Thirty Five Years of Automating Mathematics, volume 28 of
Applied Logic Series, pages 149–171. Springer, Netherlands, 2003.

2. L. Cohen and A. Avron. The middle ground–ancestral logic. Synthese, pages 1–23,
2015.

3. L. Cohen and R. L. Constable. Intuitionistic ancestral logic. Journal of Logic and
Computation, 2015.

4. HD. Ebbinghaus and J. Flum. Finite Model Theory. Springer Science & Business
Media, 2005.

5. S. Feferman. Finitary inductively presented logics. Studies in Logic and the Foun-
dations of Mathematics, 127:191–220, 1989.

6. G. Gentzen. Investigations into logical deduction, 1934. In German. An English
translation appears in ‘The Collected Works of Gerhard Gentzen’, edited by M. E.
Szabo, North-Holland, 1969.

7. JY. Girard. Proof theory and logical complexity, volume 1. Humanities Press, 1987.
8. J. Y. Halpern, R. Harper, N. Immerman, P. G. Kolaitis, M. Y. Vardi, and V. Vianu.

On the unusual effectiveness of logic in computer science. Bulletin of Symbolic
Logic, 7(02):213–236, 2001.

9. L. Henkin. Completeness in the theory of types. Journal of Symbolic Logic,
15(2):81–91, 1950.

10. N. Immerman. Languages that capture complexity classes. SIAM Journal on
Computing, 16(4):760–778, 1987.

11. D. Kozen. Kleene algebra with tests. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 19(3):427–443, 1997.

14

12. R. M. Martin. A homogeneous system for formal logic. Journal of Symbolic Logic,
8(1):1–23, 1943.

13. R. M. Martin. A note on nominalism and recursive functions. Journal of Symbolic
Logic, 14(1):27–31, 1949.

14. J. Myhill. A derivation of number theory from ancestral theory. Journal of Symbolic
Logic, 17(3):192–197, 1952.

15. S. Shapiro. Foundations without foundationalism: A case for second-order logic.
Oxford University Press, 1991.

16. W. W. Tait. A nonconstructive proof of gentzen’s hauptsatz for second order
predicate logic. Bulletin of the American Mathematical Society, 72(6):980–983,
1966.

17. G. Takeuti. Proof theory. Courier Dover Publications, 1987.
18. S. Wohrle and W. Thomas. Model checking synchronized products of infinite

transition systems. In Logic in Computer Science, pages 2–11, 2004.

15

