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Type theories implemented by strong proof assistants have become
highly effective as specification languages for a wide range of computa-
tional tasks, from operating systems and compiler verification [8,4] to the
synthesis of correct-by-construction distributed protocols [11]. These type
theories are rich logical systems which are difficult to grasp all at once. It
is therefore interesting to see how they can be built from the ground up,
starting with First-Order Logic (FOL) as is the practice for set theory.
This turns out to be quite challenging in the case of constructive type
theories. In this work we take another step toward a standard explication
of constructive type theory.

Pure First-Order Logic is one of the most widely studied systems of
logic.3 It is the base logic in which two of the most studied mathemat-
ical theories, Peano Arithmetic (PA) and Zermelo-Fraenkel set theory
with choice (ZFC), are presented. The intuitionistic versions of these
systems, iFOL, Heyting Arithmetic (HA), Intuitionistic ZF (IZF ) [6]
and the related CZF [1], are also well studied. These intuitionistic logics
are important in constructive mathematics, linguistics, philosophy and
especially in computer science. Computer scientists exploit the fact that
intuitionistic theories can serve as programming languages [3,10] and that
iFOL can be read as an abstract programming language with dependent
types.

We are interested in natural extensions of iFOL that clearly reveal
the duality between logic and programming, and can capture general logi-
cal principles that have applicable computational content. It is clear that
reasoning effectively about programs requires having some version of a
transitive closure operator so that one can describe such notions as the
set of nodes reachable from a program’s variable. Ancestral Logic (AL)
is a well known extension of FOL (e.g., [2,5,9]) appropriate for defining
the transitive closure of binary relations. In this work we develop an in-
tuitionistic version of AL, iAL, as a refinement of AL and an extension
of iFOL, capable of giving computational explanations of the same com-

3 We use the term pure to indicate that equality, constants, and functions are not
built-in primitives.



monly occurring fundamental notions. iAL is a dependently typed abstract
programming language with computational functionality beyond iFOL
given by its realizer for the transitive closure, TC. We derive this oper-
ator from the natural type theoretic definition of TC using intersection.
Many proofs in iAL turn out to have interesting computational content
that exceeds that of iFOL in ways of interest to computer scientists.
We prove that iAL is sound with respect to constructive type theory by
showing that provable formulas are uniformly realizable. Furthermore, we
show that iAL subsumes Kleene Algebras with tests [7] and thus serves as
a natural programming logic for proving properties of program schemes.
We also extract schemes from proofs that iAL specifications are solvable.
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