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Abstract
Constructive logic and type theory have traditionally been grounded in pure, effect-free model
of computation. This paper argues that such a restriction is not a foundational necessity but a
historical artifact, and it advocates for a broader perspective of effectful constructivism, where
computational effects, such as state, non-determinism, and exceptions, are directly and internally
embedded in the logical and computational foundations. We begin by surveying examples where
effects reshape logical principles, and then outline three approaches to effectful constructivism,
focusing on realizability models: Monadic Combinatory Algebras, which extend classical partial
combinatory algebras with effectful computation; Evidenced Frames, a flexible semantic structure
capable of uniformly capturing a wide range of effects; and Effectful Higher-Order Logic (EffHOL),
a syntactic approach that directly translates logical propositions into specifications for effectful
programs. We further illustrate how concrete type theories can internalize effects, via the family of
type theories TT□

C . Together, these works demonstrate that effectful constructivism is not merely
possible but a natural and robust extension of traditional frameworks.
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1 Introduction

Constructive logic and type theory are grounded in a profound principle: that mathematical
truth should be computationally meaningful. From Kleene’s realizability interpretation [46]
to Martin-Löf’s type theory [55], constructive foundations have sought to align provability
with computability, and logical propositions with programmatic constructions. This strongly
manifests in the Curry–Howard correspondence [42,80] which has driven decades of innovation
in both logic and programming languages, shaping the design of type theories and enabling
the development of interactive theorem provers such as Rocq and Agda [44,62], and more.

Yet despite the inherently computational nature, foundational constructive frameworks
have traditionally recognized only a narrow notion of computation. That is, most constructive
theories assume a pure model of computation, in which program behaviour can be described as
simple input-output transformations (à la mathematical functions). This excludes programs
that affect the computational process in ways that are not purely functional, such as
state manipulation, exceptions, non-determinism, concurrency, interactions with external
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1:2 Computation First: Rebuilding Constructivism with Effects

environments, etc. This limitation is apparent in both the semantic and syntactic pillars of
constructivism. Semantically, realizability theory, which, at its core, concretizes the principle
of constructivity by interpreting formulas as specifications for computational entities within
a programming language, plays a central role in constructive foundations to provide models
for various theories, including Higher-Order Logic (HOL) and Zermelo-Fraenkel set theory
(ZF). However, realizability models have traditionally been built over effect-free (up-to
non-termination) partial combinatory algebras (PCAs) [75,78]. Syntactically, type theory,
which serves as the syntactic and formal deductive framework for constructive reasoning,
lie at the heart of most modern interactive theorem provers, providing not only a logic
for mathematical reasoning but also a computational foundation for program verification.
However, these systems are typically designed to guarantee strong metatheoretic properties,
such as normalization, decidable type-checking, and canonicity of terms, making them
inhospitable to effectful constructs like state, exceptions, concurrency, or control. And thus,
these foundations generally prevent direct internal expression of computational effects, and
instead, when effects are needed, they are usually modeled externally via monads or abstract
interpretation layers, rather than being integrated into the logical core of the system.

But this restriction is not a foundational necessity. Rather, it is a methodological artifact,
a reflection of historical preferences for purity due to the importance of the λ-calculus and
metatheoretic tractability. With the evolution of programming languages toward effectful
computation, this divergence between foundational logic and practical computation has
become increasingly untenable. If the Curry–Howard correspondence is to remain meaningful,
logic must be capable of expressing computation in all its complexity, not through encodings
or external models, but through internal structure. Indeed, the logical structures that
underpin constructivism should not offer an idealized abstraction of computation, but rather
serve as its foundational account.

There are many potential exciting implications to uprooting the built-in computational
limitations and enriching the theory of constructivism with effects. For one, effectful
constructivism can be exploited to provide novel computational meaning and implement
foundational principles. Recent works have begun to incorporate effects such as memory
or nondeterminism, to obtain additional logical structure, shaping the resulting logical
theory. For example, Krivine’s classical realizability shows that extending the λ-calculus
with new programming instructions results in new reasoning principles: callcc to obtain
classical logic [52], quote for Dependent Choice [51], etc. In addition, the principle of
Countable Choice (CC) was shown to be implementable using monotonic memory through a
method called memoization [12]. The specifics of such computational interpretations can
also carry meaningful practical implications for constructive systems. And so in effectful
constructivism one can also compare different, logically equivalent, interpretations in terms
of their computational behaviour, e.g., efficiency, etc.

Effectful constructivism also reveals a certain volatility of constructive foundations. When
we say that a statement is “constructively valid” if it holds in all models, what do we really
mean? Do we only refer to the logical substructure of the model or are we also looking at
all possible computational models? Indeed, in effectful constructivism the validity of logical
principles, such as CC or Markov’s Principle, can depend sensitively on the computational
substrate. For example, constructive type theories are often claimed to model CC (see,
e.g., [1, 74]) simply since they model the relational variant of it due to the fact that the
standard realizability interpretation entails that the proof of totality of the relation is in
itself a choice function. However, CC can be invalidated by simply adding the computational
capability of nondeterministic reallocation in the form of a coin flip [12], while, as noted,
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extending the computational system with memoization restores CC even in the presence of
demonic non-determinism (see Sec. 2.1). Various other works, e.g., [7, 10,40,57], employed
different methods such as coinduction, lazy evaluation, and infinite terms in a manner similar
to memoization, suggesting that it is, somehow, a more robust model of CC. Similarly,
Markov’s Principle may hold under certain control effects but fail in strictly constructive
contexts. These phenomena expose a fragility in the traditional notion of constructive validity:
logical truth shifts when the underlying effects change. This calls for a reexamination of
notions of constructivism, exploring which “truths” can be made robust with respect to the
underlying effects considered and which cannot.

To address this, we need a refined perspective of robust constructive validity, according
to which a principle is robustly valid across a class of realizability models that share
essential computational features, such as monotonic memory, controlled nondeterminism,
or continuations. This structural view shifts logical validity from a static property to
an invariant across computational architectures. For example, CC may be robustly valid
relative to models that support monotonic memory. Establishing this robustness requires
additional computational analysis, such as developing a notion of morphism that preserves
the underlying computational structure. Such computational morphisms of effectful models
will provide more robust constructive foundations, where one can prove that not only does
an axiom hold within a particular model, but it also holds in all extensions of that model
regardless of what additional effects might be introduced. This, in turn, will lead to extensible
constructive systems, in which effectful computations can be used as needed without concern
for accidentally breaking prior foundations. This structural view of robust validity aligns
logical consequence with computational invariance. Just as formal logic demands explicit
axioms, constructive reasoning must make explicit the computational assumptions, effects
included, that shape its theory.

These observations are not merely theoretical. In mechanized verification, the mismatch
between effectful programs and effect-free logics limits what can be verified internally.
Therefore, interactive theorem provers based on pure type theories generally require external
modeling for any computation that involves effects. This dependency can introduce potential
trust issues, as evidenced by several instances where incorrect models led to undetected
bugs, e.g., in the verified compiler CompCert due to a flawed formalization of PowerPC
semantics [21, 82], and an oversimplified model causing an overlooked unsoundness issue
in Java’s type system [2, 29, 61]. Alternatively, the fact that many provers are based on
constructive theories with a built-in understanding of computation can be exploited to
develop and reason about the software internally. But to support the internal development
of mechanically verified real-world effectful software, the underlying constructive framework
must itself support effects internally and natively.

This paper aims to put forward this vision of effectful constructivism and ground it
in feasibility. For this, we first survey motivating examples from recent discourse where
computational effects reshape the logical status of key principles, illustrating both the
expressive power and the fragility of theorems under variation in effects (Sec. 2). Having
hopefully illustrated to the reader the value and impact of internalizing effects as first-
class citizens in constructivism, we then aim to demonstrate that a systematic uniform
incorporation of effects is not only feasible, but also quite natural. For this, we outline
three semantic realizability frameworks that structurally integrate effects, each in a different
manner while all, in some sense, extending traditional realizability-related structures (Sec. 3).
We further discuss constructive type theories, focusing on TT□, a family of extensional type
theories that internalize effects using choice operators and modalities (Sec. 4).
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1:4 Computation First: Rebuilding Constructivism with Effects

All in all, this survey advocates a unified thesis: computation, with all its effects, is not
an obstacle to constructive logic, but its proper foundation. Effects are not noise – they are
structure. Constructivism must be reshaped to make this structure explicit and to harness
it for foundational insight.

2 Effects Reshape Logic: Motivating Examples

This section reviews a selection of compelling examples from the literature where compu-
tational effects have reshaped logical principles, illustrating how the model of computation
directly impacts logical validity. This is by no means an exhaustive review, but rather
a focused exploration of key instances where effects and logic intersect in insightful ways.
Making these dependencies explicit is crucial for developing robust constructive systems that
accurately reflect the computational realities they aim to model.

2.1 Choice Principles via Memoization
The Axiom of Choice (AC), in one of its many formulations, states that every total relation
has a corresponding function exhibiting that relation.(
∀x : A. ∃y : B. R(x, y)

)
⇒

(
∃f : BA. ∀x : A. R(x, fx)

)
While originating from set theory, AC also has various formulations in constructive theories.
Whereas the intensional formulation of AC is trivially modelled by many constructive type
theories through the standard interpretations of the quantifiers, the extensional formulation
is essentially inconsistent with them. This is because the extensional AC implies the (non-
constructive) Law of Excluded Middle (LEM) [26]. This is but one of many famous unexpected
consequences of (extensional) AC. So while constructive theories cannot implement the full
(extensional) AC, one can constructively approach AC. That is, we can provide computational
models of variants of the axiom that are equivalent to AC only in the presence of LEM.

One important such variant is that of Countable Choice (CC), in which one restricts
attention to relations over, say, the natural numbers (taking A := N). CC is a fundamental
principle in constructive real analysis as it is used to unify the different formalizations of the
reals. Cauchy reals (of converging sequences of rational numbers) are not, in fact, Cauchy
complete in constructive real analysis. The Dedekind reals are, but there is no way to
convert a Dedekind real to a Cauchy real [54]: while for any given degree of precision one
can demonstrate that there exists a rational number that approximates the Dedekind real
up to that precision, there is no way to construct an infinite sequence of increasingly precise
approximations. For this, one needs to use CC.1

Now, CC is generally accepted as constructively valid as it holds true in traditional
realizability models (stemming from PCAs). But this fact relies on the determinacy of
the internal computational system, and, in fact, the proof fails in the presence of non-
determinism because the realizer for the totality of the relation no longer necessarily behaves
like a deterministic function. Nonetheless, the addition of stateful computation can then
restore CC [12]. The introduction of mutable (monotonic) shared state allows for the
memoization of the non-deterministic realizer, thereby ensuring that repeated queries for the

1 In fact, weak CC, in which choice is possible if there is at most one choice to be made across all the
countable inputs, is sufficient.
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same input would produce the same output. This memoization process is enabled due to
the fact that for the natural numbers one can compare a given input with prior inputs for
equivalence, a property which does not hold for more general types.

There are a number of systems implementing notions of choice for various classical
settings, e.g., [7, 10, 40, 57]. Interestingly, despite the difference in goals, these systems
use techniques like coinduction, lazy evaluation, and infinite terms in a manner similar to
memoization, suggesting that it is, somehow, a more robust interpretation of CC. Whereas in
the constructive setting the challenges lie in dealing with impredicativity and non-determinism,
in all these systems the challenge lies in being compatible with the complex control constructs
used to give constructive interpretations of classical logic [3, 25, 59]. In particular, [40] shows
that a mixed-strength existential quantifier can simultaneously be compatible with classical
logic while also providing a constructive interpretation of weak Dependent (and Countable)
Choice. [57] refines this work and proves strong normalization (and therefore also soundness)
of a sequent-style variant of [40]’s logic dPAω. [7] implement a negative translation of AC by
using a bar-recursion-like operator.

Beyond CC, Dependent Choice (DC), which allows for the construction of sequences
where each element depends on the previous one, can also be realized using state.(
∀x : A. ∃y : A. R(x, y)

)
⇒

(
∃f : AN. ∀n : N. R(f(n), f(n+ 1)

)
As noted, Herbelin developed a calculus, dPAω, in which constructive proofs of CC and DC
can be derived via the memoization of choice functions (in a way that would be impossible in
a stateless model [58]). The specifics of such computational interpretations have meaningful
practical implications for constructive systems. To see why, consider again the example
of the reals. Both Countable and Dependent Choice can be implemented using mutable
state and are sufficient for constructing the infinite sequences needed for Cauchy reals
to be Cauchy-complete (so, logically, one could choose either one); however, they have
different implementation characteristics. The implementation of CC uses an (infinite) array
to “remember” non-unique choices as they are made on demand. Each entry in the array is
computed independently, resulting in a significant amount of redundant computation and
requiring a less efficient choice policy to ensure that the sequence converges. With DC,
each entry in the array is computed using the value of the previous entry, avoiding this
redundancy and permitting a much more efficient choice policy (e.g. choose something at least
twice as precise as the previous entry). In fact, [47] uses a stronger (effectfully computable)
principle of non-deterministic DC to mechanically verify and extract efficient computations
approximating real numbers up to arbitrary precision.

2.2 Classical Logic via Continuations
Classical logic, characterized by principles such as the Law of Excluded Middle (LEM)
and Pierce’s Law, has traditionally been considered incompatible with constructivism due
to its reliance on non-constructive proof techniques. However, a rich line of research has
demonstrated that classical logic can, in fact, be constructively interpreted by introducing
continuations, a concept originating from programming languages, and the control operator
call/cc (call with current continuation) [3,25,38,59]. Roughly speaking, a continuation is
a higher-order function that represents the “rest of the computation” at any given point,
effectively capturing the control state of the program. When a continuation is captured (e.g.,
using call/cc), it can be stored, passed around, or invoked multiple times, providing direct
control over the execution flow in a manner typically outside the scope of pure functional
computation. This mechanism is extremely powerful because it allows for non-local exits
from a computation, essentially allowing for the representations of many other effects [32].

FSCD 2025



1:6 Computation First: Rebuilding Constructivism with Effects

The idea of using call/cc to interpret classical logic was developed into a robust and
highly influential framework by Krivine [52], known as classical or Krivine realizability.
Krivine’s framework is based on the λc-calculus, an extension of the λ-calculus with a
call/cc instruction that enables the manipulation of control flow. The Curry–Howard
correspondence directly relates call/cc to Peirce’s law, effectively transforming the compu-
tational model into a setting where classical logic can be directly realized. This ability of
control operators like call/cc to dynamically explore and resolve cases is the computational
essence of classical reasoning.

The original presentation of Krivine’s realizability uses control operators in a direct-
style fashion in which call/cc instructions can be compiled to the pure λ-calculus using
a continuation-passing style (CPS) translation. Later, Oliva and Streicher demonstrated
that Krivine realizability can be obtained by combining a standard intuitionistic realizability
interpretation with a CPS translation [35,56,63]. Beyond call/cc, Krivine further expanded
his framework by introducing the quote instruction, which computes a natural number
associated with the code of a program in a way that allows comparing programs based on
their codes [51]. This can be seen as enabling the dynamic generation of choices based on
the evolving state of computation, which, in turn, permits the constructive interpretation of
principles like DC, where the evolving state of computation can influence the generation of
choices.

2.3 Markov’s Principle via Control Operators, Exceptions and
Monotonic Memory

Markov’s Principle (MP) is a central principle in (Russian) constructive mathematics nowa-
days most commonly stated as follows:

∀f : N→ B. ¬¬(∃n. fn = true)→ ∃n. fn = true.

Essentially, it states that Σ0
1 propositions, i.e. existential quantifications over decidable

predicates, are stable under double negation [24,27,68].
In Krivine realizability, where control operators such as call/cc are available, MP can

be realized constructively. Indeed, since continuations provide a form of non-linear control
flow, they allow the system to search for an element without requiring a fully constructive
witness. Alternatively, Pédrot used exceptions to realize MP within the Calculus of Inductive
Constructions (CIC) [65]. Concretely, by extending the type theory with a form of statically-
bound exception mechanism, one can extract an existential witness from a proof of its double
negation [39].

The subtle additional structure offered by effectful computation opens another critical
avenue for constructivism by allowing for differentiating variants of constructive principles.
Many key principles, such as MP, have various formalizations that are classically equivalent,
but not necessarily in constructive foundations. However, while this is well-known, it is often
overlooked, leading to false claims in the constructive discourse. For example, the various
non-constructively-equivalent definitions of decidable predicates lead to non-equivalent MPs,
resulting in mistakes about the status of MP, e.g., in [65]. A recent work [14] clarified
the status of three MP variants: MPP (for propositional decidability), MPB (for Boolean
decidability), and MPPR (for primitive recursive functions). The separation of the variants,
in the spirit of [24, 68], was done using TT□

C [18, 20], a generic family of effectful, extensional
type theories with a forcing interpretation parameterized by modalities.
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The separation of the MP variants is achieved by instantiating the choice operator C,
primarily using choice sequences of Booleans or propositions (building on ideas going back
to [48,49,76]). For example, to refute MPB, the authors construct a model based on sequences
of Boolean choices. In this model, a statement like ¬¬∃n. f(n) = true can hold, since it is
always possible to make the choice “true” eventually, while ∃n. f(n) = true does not hold
because one can construct a path where “true” is never chosen. Similarly, using propositional
choices allows for the falsification of MPP. Crucially, using the TT□

C framework one can show
that in these same models, variants for effect-free functions or functions with limited effects
do hold. This distinction reveals how effect-free or limited-effect computations maintain
consistent behavior across different possible future worlds (states of choice sequences), unlike
general effectful computations.

2.4 Continuity via Reference Cells and Dialogue Trees
Continuity is a fundamental concept in constructive mathematics, traditionally defined as the
property that a function from NN → N requires only a finite prefix of the input to determine
its output.

∀f : NN → N ∀α : NN ∃m : N ∀β : NN. (∀n ≤ m. α(n) = β(n))→ f(α) = f(β)

Continuity is typically justified through semantic arguments (often forcing-based), where
functions are shown to respect this finite-dependence property in a model, e.g., [5, 22,
23, 30, 73, 81]. However, recent advancements have demonstrated that continuity can be
directly internalized within constructive type theory through the use of various computational
effects [13,19].

One of the most direct methods for realizing continuity within type theory is through the
use of stateful computations, particularly by leveraging reference cells. In this framework,
continuity is not an external property but a constructively enforced behavior: as a function
is evaluated, the type theory dynamically tracks the length of the input segment necessary to
determine the output. Specifically, a reference cell is used to maintain a record of the smallest
initial segment of the input sequence that has been read so far. This mechanism allows the
system to efficiently compute the modulus of continuity of a function. Functions defined in
this manner are constructively continuous by design, and their modulus of continuity is an
internal component of their evaluation [19].

An alternative method of realizing continuity is achieved using inductive dialogue trees.
In this approach, the continuity of a function is represented by the structure of a dynamically
generated tree, where the paths of the tree encode information about how much input (an
initial segment of a sequence in the Baire space) is needed to determine the output, and
the leaves contain the computed values [13]. These dialogue trees are dynamic and evolve
based on the function’s interactions with its input, providing a general and flexible model for
continuity. At each step, the tree structure captures the minimal interaction necessary for
the function to produce a value.

The significance of these computational methods lies in their ability to directly enforce
and witness continuity within the type theory itself. Rather than appealing to external
semantic models, these systems constructively guarantee continuity through their internal
effectful mechanisms. This means that the modulus of continuity (the m) is not merely
a logical construct but an actively computed value, directly linked to the computational
structure of the function. Moreover, the methods are efficient, as they avoid redundant
recomputation by dynamically tracking input dependencies.

FSCD 2025
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2.5 And Many More
Paul Cohen’s method of forcing is traditionally used to construct models of set theory where
specific statements hold or fail. Forcing constructs new models of set theory by adding
“generic” elements, allowing for the exploration of various set-theoretic possibilities. One
approach to adapting forcing in constructive settings involves simulating the structure of
forcing using monotonic memory, i.e., a memory model where the state can only grow or
remain the same over time, never decreasing. Avigad demonstrated that this monotonic
accumulation of conditions can simulate the behavior of forcing, thereby constructing models
where certain propositions hold [4].

Another use of monotonic memory arises in the context of nonstandard analysis, which
introduces infinitesimals and infinite numbers to analysis. In constructive mathematics,
Dinis and Miquey have shown how realizability interpretations using monotonic memory
can provide a constructive framework for nonstandard principles [28]. By extending the
λ-calculus with a memory cell that contains an integer (the state), they indicate in which slice
of the ultrapower the computation is being done. This stateful realizability interpretation
mimics the structure of the ultraproduct by allowing formulas to be interpreted as sets of
terms with states, where each state corresponds to a slice. The effectful interpretation is then
used to provide realizers for nonstandard reasoning principles, for instance, the idealization
principle is realized by a program whose computational behavior involves a diagonalization
process that increases the value stored in the state/reference.

The notion of parameterized realizability, introduced by Bauer and Hanson in [6], extends
traditional pure realizability by building on a notion of computations that has access to
external oracles. Using this framework, the authors constructed a topos in which the Dedekind
reals are internally countable. The core idea involves using parameterized partial combinatory
algebras where the application of a realizer depends on a parameter from a specified set
P. In the specific topos that yields countable reals, this parameter set P consists of oracles
representing non-diagonalizable sequences. The realizers themselves are partial maps that are
computable relative to these oracles. Thus, the dependence of computation on an external
parameter or oracle allows the chosen non-diagonalizable sequence to serve as an internal
enumeration of the reals within the constructed topos.

Computational reflection is another powerful effect used to internalize logical principles.
Pédrot has explored the relationship between Church’s Thesis (CT) and dependent type
theory, particularly Martin-Löf Type Theory (MLTT) [66]. For this, MLTT was extended
with quote primitives that relate to execution step counts and validating computation traces,
essentially internalizing the runtime behavior of programs within the system. Using this,
MLTT can internally realize CT because the new terms yield that for every function, there
exists a code, and for every input to that function, there exists a step count and a proof that
running the code for that many steps yields the correct result.

3 Effectful Realizability

The diverse examples surveyed so far vividly illustrate how computational effects can funda-
mentally reshape logical theory, revealing new principles, refining existing ones, and exposing
subtle distinctions between related concepts. Yet, these examples have been examined
in isolation, with each one highlighting a particular effect in a particular setting and its
corresponding logical implications. This fragmented view leaves an important question
unanswered: Is there a unified framework capable of systematically capturing the relationship
between computational effects and logical principles?



L. Cohen 1:9

This section explores how computational effects can be directly internalized within a
semantic view of constructivism, and specifically the realizability setting. The realizability
framework allows us to focus on the semantic models themselves, setting aside the technical
complexities that arise when dealing with type theories. By extending realizability models
to accommodate effects, we can systematically explore how computational effects impact
logical principles, moving beyond isolated examples toward a coherent, unified understanding.
We begin by briefly recalling the traditional structure of realizability models stemming
from Partial Combinatory Algebras (PCAs) (Sec. 3.1), which serve as the foundation
for effect-free realizability. We then briefly review three complementary approaches that
generalize this framework to directly incorporate computational effects. First, we provide
an algebraic foundation for effectful computation by extending the notion of PCAs to
Monadic Combinatory Algebras (MCAs), incorporating monadic effects (Sec. 3.2). However,
MCAs are still intrinsically tied to monadic structures and the traditional representation of
computational models. Thus, we next consider the more abstract framework of evidenced
frames, which generalizes the notion of realizability by abstracting away from any specific
computational structure, capturing a broad spectrum of effects through general evidence
(Sec. 3.3). Finally, we explore a syntactic perspective to realizability through Effectful
Higher-Order Logic (EffHOL), an effectful program logic that can be soundly reduced to the
well-established (pure) Higher-Order Logic (Sec. 3.4).

Each of these methods represents a natural and principled extension of traditional
realizability, reflecting different aspects of how computational effects can be systematically
internalized within a logical model. Our constructions are designed to be sufficiently flexible
to uniformly support a diverse array of effectful computations, where realizers themselves
can be inherently effectful, such as λ-terms that manipulate state, exhibit nondeterminism,
or may fail entirely. Rather than treating effects as external modifications or secondary
concerns, we show that they can be directly integrated into the logical structure itself,
becoming first-class citizens in the model. This exploration reveals that the limitations of
traditional realizability models are indeed not a foundational necessity, as indeed effects
can be naturally and seamlessly internalized within realizability models. By systematically
extending these models to support computational effects, we show that constructivism can
naturally accommodate the full complexity of modern computation.

3.1 Traditional Realizability

Realizability originated from Kleene’s interpretation of intuitionistic number theory in
the 1940s [46] and has since developed into a large body of work in logic and theoretical
computer science where it is used both as a model-theoretic tool and as a method for
extracting computational insight. The key idea of realizability is to replace the standard
Traskian truth values interpretation of formulas with an interpretation that assigns a set of
computational elements called realizers (or evidence) to each formula, with the intuition that
the formula dictates the computational behavior of these realizers. In essence, realizability
consists of three components: formulas (or types) in some logical framework (e.g., HOL
or ZF), a computational system such as the λ-calculus or some combinators algebra, and
an interpretation of formulas that connects the former two elements by providing a “truth
value” assignment to formulas based on the elements in the computational system. Thus, a
realizability model specifies what it means for a proposition to be “realized” or made true
by computational objects, and the salient feature of realizability is that these realizers are
always computable and that truth values are saturated w.r.t. computational evaluation.

FSCD 2025



1:10 Computation First: Rebuilding Constructivism with Effects

In the original Kleene’s realizability, the realizers are natural numbers, and a number r
realizes a formula φ if r can be interpreted as a program that computes a witness for φ. The
realizability relation r ⊩ φ is defined as follows:

r ⊩ (φ ∧ ψ) if r is a pair (r1, r2) where r1 ⊩ φ and r2 ⊩ ψ.
r ⊩ (φ ∨ ψ) if r is a pair (i, r1), where i = 0 and r1 ⊩ φ or i = 1 and r1 ⊩ ψ.
r ⊩ (φ→ ψ) if r is a program that, given any realizer s ⊩ φ, produces a realizer r · s ⊩ ψ.
r ⊩ ∀x.φ(x) if r is a program such that for any n ∈ N, r · n ⊩ φ(n).
r ⊩ ∃x.φ(x) if r is a pair (n, r1) where n ∈ N and r1 ⊩ φ(n).

In this realizability model, logical connectives are interpreted in terms of computational
processes: conjunction is realized by a pair of realizers for each conjunct, disjunction is
realized by a pair where the first element indicates which disjunct is true, implication is
realized by a function that transforms realizers, universal quantification is realized by a
program that produces realizers for each instance, and existential quantification is realized
by a pair of a witness and a realizer that the witness satisfies the formula.

But while Kleene’s original realizability was based on arithmetical realizers, the modern
realizability models rely on a computational system of a Partial Combinatory Algebra
(PCA) [31, 34, 41, 78]. PCAs offer an algebraic model for the untyped λ-calculus, thereby
providing an abstract interface that ensures computability (i.e., Turing completeness) without
committing to the details of any specific programming language. Concretely, given a set
of codes A, a PCA is defined via a (partial) application function · : A× A ⇀ A satisfying
some completeness conditions that ensure they can support general computation, i.e., be
at least as computationally powerful as the λ-calculus(often formalized via the definability
of the S and K combinators). From a PCA one can obtain a realizability tripos (i.e., a
model of HOL, or more generally a higher-order fibration over a cartesian-closed category)
by modeling predicates as indexed subsets of codes (i.e. a predicate on a set I specifies
for each element i ∈ I which codes (if any) “realize” that the predicate holds for i) and
defining entailment between two predicates to hold whenever there is a uniform code that,
for any index, can convert any realizer of the input predicate into a realizer of the output
predicate. In turn, via the tripos-to-topos construction [72], from a realizability tripos one
can construct a realizability topos, which form the general realizability model of a highly
expressive (extensional, impredicative) dependent type theory (and set theory) [43].

However, PCAs are themselves limited in their computational capabilities. In particular,
the only computational effect they support internally is non-termination through the partiality
of the application. PCAs do offer ways in which various effects can be modeled indirectly,
usually by incorporating additional structures or operations into the underlying algebraic
framework. Notable examples include PCAs with errors, choice, exceptions, and parameters,
e.g., [6, 12, 17]. However, the ability to uniformly and internally support a wide range of
computational effects within the algebraic structure is crucial for the development of robust
and expressive constructive theories and for reasoning about them collectively.

3.2 Algebraic Approach: Monadic Combinatory Algebras

An immediate manner in which to enrich realizability models with effects is simply to
generalize the PCA structure in a way that allows capturing arbitrary effects. For this, the
notion of Monadic Combinatory Algebras (MCAs) was introduced, generalizing PCAs but
encapsulating a broader spectrum of computational effects by being constructed over some
underlying monad [15]. Monads are a common categorical device for analyzing computational
effects in the study of programming languages [60, 79]. Concretely, monads are a special
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kind of functors that allow the composition of Kleisli morphisms, i.e., morphisms where the
target is an object in the image of the functor. Using monads, a procedure that takes a value
of type A to a value of type B, while possibly invoking some computational effect, can be
modeled by a morphism from A to MB, where M is some monad that embodies the effect.

Given a (Set) monad M , a Monadic Combinatory Algebra (MCA) over M is a set of
“codes” A with an application Kleisli function: (−) · (−) : A × A → MA satisfying some
completeness conditions. The key to MCAs lies in that whereas the PCA application function
can only return a code (if anything at all), the MCA application Kleisli function returns a
computation, and so it can produce any computational effect describable by a monad. Indeed,
PCA is a special case of an MCA by instantiating the monad with the subsingleton monad,
MA = P1(A), i.e. MA is the set of subsets of A in which all elements are equal.

Leveraging the monadic structure enables MCAs to internalize various computational
effects. For example, non-deterministic computation corresponds to an MCA with M

being the powerset monad, MA = P(A), which considers the subset of possible results.
Stateful computation corresponds to an MCA with M being the powerset state monad,
MA = Σ→ P(Σ×A), which takes a code in a given state and returns a set of all possible
pairs of results in new states. CPS continuations correspond to a monad that represents a
computation with direct access to the call stack, allowing the manipulation of the control
flow of the programs in non-trivial ways MA = (A→ R)→ R. Other, more “logical” effects,
such as parametric realizability wherein computation has access to an external oracle [6],
can be captured via the subsingleton reader monad, MA = P→ P1(A), where P is a set of
some external parameters.

However, while the generalization to MCAs smoothly internalizes effects into the algebra,
it also introduces a complexity in the standard pipeline for generating realizability models.
This is because, to define a tripos from an MCA one has to define entailment. In traditional
realizability, evidence of entailment between two formulas, φ ⊢ ψ, is some code e that, when
applied to any realizer of φ produces a realizer for ψ. That is, by brutal abuse of notation:
∀ca. ca ⊩ φ ⇒ e · ca ⊩ ψ. This is well-defined in traditional realizability since when
an application is defined, it is deterministic, but this is no longer the case in MCA-based
realizability. Thus, for an arbitrary monad M , e ·ca ∈MA and it is unclear how to relate it to
ψ because e · ca is now a computation and realizability is defined for codes, not computations.
Thus, one needs to provide an additional structure that converts formulas on codes A to
formulas on computation MA in a way that respects the monad’s structure. This is given
by the notion of a M -modality, which intuitively describes a post-condition over the result
of a (possibly effectful) computation. Roughly speaking, an M -modality ⋄ is a natural
transformation that takes predicates on a set X (defined by functions from X to some
Heyting prealgebras Ω) and extends them to a function in M(X)→ Ω, intuitively thought of
as predicates on M(X). Using the modality we can write ⟨⋄x← m⋄⟩ϕ (x) stating that after
the computation m yields a value x (in case it does), then ϕ (x) holds. To obtain a sound
logical framework, an M -modality has to satisfy certain properties to ensure it is well-behaved
with respect to the computational operators of the monad and the logical operators of the
underlying complete Heyting prealgebra. For example, ensuring that properties held before
a computation continue to hold afterwards.

As shown in [15], from a “monadic core”, which essentially combines a monad with a non-
trivial modality, one can construct a realizability tripos by defining entailment between two
predicates φ ⊢ ψ whenever there is a uniform code e (in some combinatory complete subset of
the codes) that for every realizer c for φ, the result of the possibly effectful computation e · c
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realizes ψ, that is, ⟨⋄ r ← e · c⋄⟩ψ (r) holds. This shows that the generalized computational
system of an MCA still allows for the standard pipeline construction of realizability models
while accommodating a wider range of computational effects.

3.3 Semantic Approach: Evidenced Frames

Despite the extensive discourse on realizability, even in its traditional setting, the literature
does not offer a universally agreed-upon definition of the general notion of realizability
structures. This absence leaves open the question of what exactly constitutes a realizability
framework in the most general sense. This section reviews a general and highly abstract
structure that pinpoints the common structure of realizability interpretations called Evidenced
Frames. Evidenced frames aim to capture the common structural elements of realizability
without being restricted to a specific algebraic or computational model. They offer a minimal
realizability framework that is flexible enough to allow for internalization of computational
effects, even beyond monadic ones [17]. Rather than being a complete framework, an
evidenced frame can be understood as a minimal specification that various realizability
structures can instantiate, providing a unifying perspective on the relationship between
propositions, computation, and logical validity.

Roughly speaking, an evidenced frame is a triple (Φ, E, ϕ1
e−→ ϕ2) that captures precisely

the three key components of realizability: Φ is a set of of propositions, E is a set of evidence,
and ϕ1

e−→ ϕ2 is an (evidence) relation. To form an evidenced frame, these three components
need to satisfy the requirements described in Fig. 1, guaranteeing the existence of basic
computational and logical constructs.

While the standard pipeline toward realizability models traditionally stems from a PCA,
there is a uniform construction generating a realizability tripos from any given evidenced
frame. Moreover, evidenced frames are complete with respect to Set-based triposes. One way
to look at this is that realizability triposes are evidenced frames that have forgotten their
evidence. Given the fact that a PCA is a simple instance of an evidenced frame, evidenced
frames provide an alternative, powerful and flexible foundation for realizability theory. What
is more, evidenced frames can uniformly encompass a broad spectrum of computational
effects since their level of abstraction generalizes beyond the specific details of any particular
model of computation. That is, the evidence can be any computational entities, functions,
stateful computations, or non-deterministic procedures, depending on the computational
model under consideration.

In particular, the simple and unified nature of evidenced frames makes them a powerful
tool for systematic exploration of general metatheorems that link computational capabilities
and logical principles. For instance, one can ask, following the examples discussed in Sec. 2.1,
whether all realizability structures that support memoization also validate CC. This question
becomes concrete within the framework of evidenced frames, where one can identify the
minimal set of properties required to support memoization and investigate whether they
universally satisfy CC in the resulting tripos. Similarly, evidenced frames provide a natural
setting for comparing different methods that validate CC across various computational
settings. By examining whether all known approaches, despite their technical differences, can
be uniformly captured by an evidenced frame structure, one can uncover a deeper structural
connection between them. This connects to the notion of “robust validity”, where one aims to
show that a logical principle holds across a wide range of computational models that preserve
a specific computational structure. Evidenced frames make this notion precise, allowing one
to rigorously identify the conditions under which a principle like CC is robustly valid.
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Reflexivity An evidence eid ∈ E s.t. ∀ϕ. ϕ
eid−→ ϕ

Transitivity An operator ;∈E×E → E s.t. ∀ϕ1, ϕ2, ϕ3, e, e′. ϕ1
e−→ ϕ2 ∧ ϕ2

e′
−→ ϕ3 ⇒ ϕ1

e ; e′
−−→ ϕ3

Top A proposition ⊤ ∈ Φ and an evidence e⊤ ∈ E s.t. ∀ϕ. ϕ
e⊤−→ ⊤

Conjunction Operators ∧∈Φ×Φ→Φ and ⟨|·,·|⟩∈E×E →E and evidence efst, esnd ∈ E s.t.
∀ϕ1, ϕ2. ϕ1 ∧ ϕ2

efst−−→ ϕ1

∀ϕ1, ϕ2. ϕ1 ∧ ϕ2
esnd−−→ ϕ2

∀ϕ1, ϕ2, ϕ′, e1, e2. ϕ′ e1−→ ϕ1 ∧ ϕ′ e2−→ ϕ2 ⇒ ϕ′ ⟨|e1,e2|⟩−−−−→ ϕ1 ∧ ϕ2

Universal Quantification An operator ⊃∈ Φ × P(Φ) → Φ such that there exists an opera-
tor λ∈E →E and evidence eeval ∈E s.t.:

∀ϕ1, ϕ2, ϕ⃗, e. (∀ϕ ∈ ϕ⃗. ϕ1 ∧ ϕ2
e−→ ϕ) ⇒ ϕ1

λe−→ ϕ2 ⊃ ϕ⃗

∀ϕ1, ϕ⃗, ϕ ∈ ϕ⃗. (ϕ1 ⊃ ϕ⃗) ∧ ϕ1
eeval−−→ ϕ

Figure 1 The Properties of an Evidenced Frame.

3.4 Syntactic Approach: Effectful Higher-Order Logic

The syntactic approach to realizability, pioneered by Gödel [37] and further developed in
Kreisel’s modified realizability [50], abstracts away many of the complex semantic machinery
otherwise required for constructing realizability models for rich languages. By restricting
to the syntax and abstracting away the details of any particular semantic structure, it
allows for a broader spectrum of possible interpretations, each yielding its own realizability
interpretation by virtue of being a model of the target language, without having to tailor
the realizability construction to some particular structure. Roughly speaking, the syntactic
approach is based on handling realizability as a syntactic translation of logical propositions,
i.e., statements about mathematical structures, into program specifications, i.e., statements
about computational behavior, in a target program logic describing what it means to realize
the input formula. This can be seen as an internalization of the notion of realizability of
the source language into the target language. Recent works adopting the syntactic approach
include, e.g., [8, 33, 53, 77]. However, here again, works on syntactic realizability focus on the
traditional notion of realizability, which does not offer support for computational effects.

To develop a framework for syntactic effectful realizability one can consider a target
language that supports effectful programs as realizers for a higher-order source language.
Effectful Higher-Order Logic (EffHOL) provides a concrete, syntactic framework for effectful
realizability, where propositions in higher-order logic (HOL) are translated into an effectful
target language [16]. Within EffHOL, propositions can be interpreted as specifications for
effectful programs, and realizers can be typed computational entities capable of interacting
with various effects.

To provide internal support for standard programming language features, EffHOL combines
components of three languages: Higher-Order Logic to model higher-order structure, Girard’s
System Fω [36] to model higher-kinded polymorphism, and Evaluation Logic [71] to model
computational types and modalities. The computational term language enables reasoning
about effectful programs, where here too, as is the case for MCAs, the effectful aspect of
the language is captured through monads. This provides a uniform language parameterized
intuitively by a monad that carries the computational behavior of the language. Concretely,
the type system explicitly includes a type M(τ) denoting computations of type τ . To describe
specifications of effectful programs, EffHOL features a modality ⟨⋄x← p⋄⟩φ, which intuitively
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states that property φ holds when x is the result of running the program p. This modality, just
like in MCAs, is the core source of effectful computations within EffHOL. The higher-kinded
polymorphic type system allows for typed realizers of higher-order propositions.

The syntax of EffHOL is divided into six distinct components, reflecting its dual nature of
handling both computation (programs) and logic (specifications). On the computational side,
kinds and types are used to provide the types of realizers associated with typed programs.
On the logical side, indices, expressions and specifications hold the logical counterpart of
the realizability interpretation by describing the properties of these programs. This clear
division between computational and logical components allows EffHOL to maintain a robust,
expressive syntax that can seamlessly integrate rich computational effects within a logically
sound framework.

The syntactic realizability translation of HOL to EffHOL yields a realizability model of
HOL from any instance of EffHOL for a concrete choice of underlying monad (and an evaluation
strategy). Since our target language includes typed realizers, the realizability translation will
assign to an HOL proposition the type of its realizers in EffHOL, along with a specification
describing which programs of the corresponding type are realizers of that proposition. The
soundness of this translation implies that there is an algorithm that converts any provable
HOL sequent to an EffHOL proof of its translation, which, in turn, contains a computable
realizer. These extracted realizers are effectful programs, allowing for the synthesis of such
programs from proofs of propositions potentially unprovable in pure HOL.

4 Effectful Constructive Type Theories

In the previous section, we explored ways to integrate computational effects into the semantic
pillar of constructivism, namely, realizability. We now turn our attention to the type-
theoretical pillar of constructivism, where the situation becomes significantly more challenging
because, unlike realizability structures which can be generalized with relative ease, type
theories must carefully balance two conflicting objectives: expressiveness and meta-theoretical
properties. Type theories are not merely abstract models but formal systems with strict
syntactic rules, proof mechanisms, and desirable metaproperties such as normalization,
canonicity, decidable type checking, and consistency, that can be easily affected by the
introduction of effects.

Indeed, a considerable body of work has been devoted to investigating this delicate
trade-off, seeking to identify how much effectful computation a type theory can support
without undermining its metatheoretical guarantees. In [45] the authors introduce a forcing
translation for the (intensional) type theory CIC [64] extended with effects, which relies
on storage operators to translate induction principles, and crucially preserves definitional
equality. A line of work, starting from [67], involves building syntactic models of CIC by
translating CIC extended with logical principles and effects into itself. Using the monadic
translation of dependent type theory that allows effects presented in [67], in [11] the authors
present syntactic models through which properties can be added to negative types, allowing
them to prove independent results, e.g., the independence of function extensionality in
intentional type theory. In [68], the authors present a translation of CIC into itself, where
the resulting type theory features exceptions, which is consistent if the target theory is and
exceptions are required to be caught locally. The authors use this translation to exhibit
syntactic models of CIC which validate the Independence of Premise axiom, but not Markov’s
Principle. In [70], the authors solve this problem of the restriction on exceptions in [68]
by introducing a layered type theory with exceptions, which separates the consistency and
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effectful programming concerns. In [65] the authors present a syntactic presheaf model of
CIC, which solves issues with dependent elimination present in [45], and allows extending
CIC with MP. In [69], the authors go back to these dependent elimination issues and present
a new version of call-by-push-value which allows combining effects and dependent types, and
show why dependent elimination must be restricted in call-by-name, and substitution in
call-by-value, when the calculus features effects.

Here, rather than attempting to construct a fully general and uniform framework for
effectful type theory, we focus on an instructive example: TT□

C , which is a generic family of
effectful, extensional type theories [18,20]. In a nutshell, TT□

C provides a unified, modular
framework for capturing a wide range of computational effects through the concept of
time-progressing choice operators C, a general mechanism for representing computational
effects such as reference cells (modeling mutable state), choice sequences (modeling non-
determinism), or exceptions. To govern the structure of the effect, TT□

C uses a general
possible-worlds forcing interpretation parameterized by an abstract modality □, which, in
turn, can be instantiated with simple covering relations, leading to a general sheaf model.
Intuitively, each world represents a state of computation, and the transition between worlds
models the evolution of computational state over time. The forcing conditions are the worlds,
and the interpretation of types and terms (equality in a type) depends on the current world
and the modality. This structure allows the meaning of a term or type to vary depending on
the state of the world, which can change due to effects.

Unlike traditional type theories, where purity is the default, types in TT□
C are impure

by default. Thus, computational effects are the norm for terms inhabiting types, rather
than the exception. But TT□

C includes specific constructs for controlling the scope of effects.
Thus, for example, while a basic type like N represents potentially “read & write” numbers
where terms can modify the world and compute to different values based on reads, types
can also be restricted to “write-only”, where terms must compute to the same value across
world extensions, “read-only”, where computations must start and end in the same world, or
completely pure.

The controlled effects, together with the flexibility in the instantiations of the modality
and the choice operator, allow for a fined-grained assessment of the resulting system in
terms of expressivness and metatheoretic properties. Moreover, the uniformity and versatility
of TT□

C has enabled a series of results demonstrating how the system can constructively
interpret various logical principles via effectful instantiations of the system. For example,
LEM [9, 18], Continuity (see Sec. 2.4) etc, and to separate various principles such as MP
(see Sec. 2.3).

5 Conclusion

This paper explored the vision of effectful constructivism, where computational effects are
recognized as an integral part of logical systems. Rather than viewing computational effects
as external complications to be modeled or mitigated, effectful constructivism recognizes
them as an intrinsic aspect of logical reasoning. As modern programming languages have
progressed to support rich and varied computational effects, the logical structures underpin-
ning constructivism must also reflect this reality. Our exploration has shown how effectful
constructivism naturally extends traditional frameworks, revealing that logical principles are
inherently sensitive to the underlying computational capabilities. By internalizing effects,
effectful constructivism deepens the Curry–Howard correspondence and opens the door to a
broader spectrum of logical systems, semantic models, and verified applications. Computation,
with all its effects, is not an obstacle, but the true foundation of constructivism.
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