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Abstract

Many e�orts have been made in recent years to construct com-

puterized systems for mechanizing general mathematical reasoning.

Most of the systems are based on logics which are stronger than �rst-

order logic (FOL). However, there are good reasons to avoid using full

second-order logic (SOL) for this task. In this work we investigate a

logic which is intermediate between FOL and SOL, and seems to be a

particularly attractive alternative to both: ancestral logic. This is the

logic which is obtained from FOL by augmenting it with the transitive

closure operator.

Our investigation of this logic focuses mainly on two crucial aspects

of using a formal logical system: its expressive power and correspond-

ing proof systems. The expressive power of ancestral logic is deter-

mined by comparing it with that of several other logics which are in-

termediate between FOL and SOL. The proof-theoretical study is done

by presenting, investigating, and comparing two natural Gentzen-type

proof systems which are sound for ancestral logic.
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1 Introduction

Many e�orts have been made in recent years to construct systems for formal-
izing mathematical reasoning (see [22, 23]). Most of these systems go beyond
�rst-order logic (FOL), because the latter is too week for this task. Thus, in
FOL one cannot even give a categorical characterization of the most basic
concept of mathematics - the natural numbers. Hence it does not seem to be
a suitable framework for formalizing mathematics.

While FOL is too weak, the choice to use second-order logic (SOL) for
this task has many disadvantages. First, SOL has doubtful semantics, in
the sense that it is based on debatable ontological commitments. Moreover,
it does not seem satisfactory that dealing with basic notions (such as the
natural numbers) requires using the strong notions involved in SOL, such as
quantifying over all subsets of in�nite sets. Second, SOL is di�cult to deal
with from a proof-theoretical point of view.

The above considerations lead to the conclusion that the most suitable
framework for mechanizing mathematical reasoning should be provided by
some logic which is intermediate between FOL and SOL. There are several
natural candidates for this task that have been suggested in the literature,
such as weak second-order logic, ω-logic, etc. We believe that the best one is
ancestral logic - the logic obtained by adding to �rst-order logic the concept
of transitive closure of a given relation. The expressive power of this logic
is equivalent to that of some of the other candidates (see chapter 4), yet
there are several reasons to prefer it over the others. One of them is that it
seems like the easiest choice from a proof-theoretic point of view. Another
important reason is simply the simplicity of the notion of transitive closure.
Any person, even with no mathematical background whatsoever, can easily
grasp the concept of the ancestor of a given person (or in other words, the idea
of transitive closure of a certain binary relation). Here are some examples of
the use of transitive closure in every day life:

1. The transitive closure of the relation "x is a child of y" is: "x is a
descendant of y" . We often use this transitive relation to make infer-
ences, such as: if a disease is hereditary, i.e. transferred from parent
to child, and one of my ancestors had this disease, then I'll have this
disease too.

2. The transitive closure of the relation "there is a regular direct �ight
from airport x to airport y" is: "it is possible to reach y from x by one
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or more regular �ights�. More generally, the concept of connectivity in
graph theory is a direct application of the notion of transitive closure.

3. Another mathematical example: Understanding the concept of the nat-
ural numbers is basically understanding that every number is a descen-
dant of zero throw the successor relation. Also understanding the con-
cept of a wwf in formal logic involves applying certain operations again
and again starting from a class of atoms. Thus, the understanding of
basic arithmetic and basic logic relies on the understanding of the idea
of the transitive closure.

The examples above (especially the last one) show that any system designed
for capturing the ability to do mathematics must provide the means to cre-
ate the transitive closure of a relation and to make appropriate inferences
regarding it. The examples also show that our basic understanding of the
transitive closure operator involves two components: that we can construct a
new binary relation from a given one (the transitive closure of the given rela-
tion), and that if a certain property is hereditary between objects in a given
relation, then it will also be hereditary between objects which are related by
the new relation. In this work we present related proof systems for ancestral
logic which are based on these observations. We then provide some evidence
that these systems are a convenient framework for formalizing mathematics.
Also, we will attempt to show that these systems are adequate for the use of
ancestral logic.

At this point, it is important to note that a great amount of work has been
devoted in the past to ancestral logic in �nite model theory and related areas
of computer science. Unfortunately, that work is mostly irrelevant for the
task of formalizing mathematics, since it mostly deals with �nite structures.
Moreover, most of that research has been done from a purely model-theoretic
point of view, while here we seek to �nd useful proof systems for ancestral
logic.
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Thesis organization

The rest of this thesis consists of 5 chapters:

� Chapter 2 provides some de�nitions and notations which will be nec-
essary throughout the thesis.

� In Chapter 3 the formal de�nitions of the transitive closure operator
and ancestral logic are given. Then, some of the most important model-
theoretic properties of ancestral logic are presented and its expressive
power is described.

� Chapter 4 describes some alternative logics between �rst-order logic
and second-order logic. After introducing the logics, we show that
they indeed all o�er stronger expressive power than �rst-order logic,
but weaker than second-order logic. Next, we compare the expressive
power of these logics using three di�erent types of comparison. From
this comparison we conclude that all of them are essentially equivalent
to ancestral logic.

� Chapter 5 contains the main new results of this work. It deals with an-
cestral logic from a proof-theoretic point of view. We start by reviewing
previous Hilbert-style proof systems which have been suggested in the
literature. Then, two related natural Gentzen-style systems which are
sound for ancestral logic is presented: one for the re�exive transitive
closure and one for the non-re�exive one. This is followed by explor-
ing some properties of these systems which suggest that the system for
the re�exive transitive closure is superior to that of the non-re�exive
one from a proof theoretical point of view. We end by discussing ba-
sic proof-theoretical questions concerning the systems such as: cut-
elimination and constructive consistency proof.

� Chapter 6 presents some directions for further research.
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2 Preliminaries

In what follows σ is a �rst-order signature with equality, L1 (σ) is the �rst-
order language based on σ and ϕ, ψ are meta-variables for formulas.

To avoid confusion regarding brackets, we use ”(”, ”)” for brackets in a
formal language, and ”[”, ”]” for brackets in the meta-language.

Notation 2.1. Fv [ϕ] denotes the set of all free variables occurring in ϕ.

Notation 2.2. Let ϕ be a formula, t1, ..., tn terms, and x1, ...xn distinct vari-

ables in some language L. Then ϕ
{
t1
x1
, ..., tn

xn

}
denotes the formula obtained

from ϕ by simultaneously substituting ti for each free occurrence of xi in ϕ.
We assume that t1, ..., tn are free for x1, ...xn in ϕ.

Notation 2.3. Let ϕ be a formula in prenex normal form. Then ϕ̂ denotes
the matrix of ϕ.

Notation 2.4. σPA = {0, s,+, ∗} where 0 is a constant symbol, s is a unary
function symbol, and +, ∗ are binary function symbols.

De�nition 2.5. The �rst-order axiom system PA (Peano Arithmetic) con-
sists of the axioms below. The �rst six are axioms for the successor, addition
and multiplication, respectively, and the last one is a scheme for induction.

∀x (s (x) 6= 0) (2.1)

∀x∀y (s (x) = s (y)→ x = y) (2.2)

∀x (x+ 0 = x) (2.3)

∀x∀y (x+ s (y) = s (x+ y)) (2.4)

∀x (x ∗ 0 = 0) (2.5)

∀x∀y (x ∗ s (y) = x ∗ y + x) (2.6)

ϕ
{

0
x

}
∧ ∀x

(
ϕ→ ϕ

{
s(x)
x

})
→ ∀xϕ (2.7)

De�nition 2.6. A structure for L1 (σ) is an ordered pair M =< D, I >,
where D is a non-empty set of elements, called the domain of the structure,
and I is an interpretation function on σ such that:

� For a constant symbol c in σ: I [c] ∈ D .

4



� For an n-ary function symbol f in σ: I [f ] ∈ Dn → D.

� For an n-ary predicate symbol P in σ: I [P ] ⊆ Dn.

Notation 2.7. N =< N, I >is the standard structure for σPA, i.e. I [0] is
zero, I [s] is the successor function, I [+] is the addition function and I [∗] is
the multiplication function.

De�nition 2.8. LetM =< D, I > be a structure for L1 (σ). An assignment
in M is a function v from the set of variables to D. v is then extended to be
a function from the set of all terms in L1 (σ) to D in the following way:

� For c a constant symbol in σ: v [c] = I [c] .

� For f an n-ary function symbol in σ and t1, ..., tn terms:
v [f (t1, ..., tn)] = I [f ] [v [t1] , ..., v [tn]].

De�nition 2.9. An x-variant of an assignment v is an assignment which
di�ers from v at most in the value it assigns to x. We denote by v [x := a]
the x-variant of v which assigns to x the element a from D.

De�nition 2.10. Let σ and σ′ be signatures such that σ′ ⊇ σ. A structure
M ′ =< D′, I ′ > for L1 (σ′) is said to be an expansion of the structure
M =< D, I > for L1 (σ) i� D = D′ and for each symbol k in σ, I[k] = I ′[k].

In this paper we consider a logic L as a couple consisting of two functions
on signatures: L =< L,�L>. L assigns to each �rst-order signature a formal
language, and �L assigns to each �rst-order signature a collection of pairs
of the form 〈〈M, v〉 , T 〉 where M is a structure for σ, v is an assignment in
M , and T is a set of formulas in the language that L assigns to σ. Note
that this collection must satisfy certain properties that we are not going to
specify here. Formally, we write Lσ =< L (σ) ,�L (σ) > to denote the logic
where L (σ) is the language which the function L assigns to σ, and �L (σ)
is the mentioned collection of pairs assigned to σ (the semantic satisfaction
relation). When there will be no danger of confusion we will omit σ from the
second element of the pair and write only �L. Instead of 〈〈M, v〉 , T 〉 ∈�L
we write M, v �L T . The consequence relation induced by the satisfaction
relation is: T `L ϕ i� for each couple 〈M, v〉, if 〈〈M, v〉 , T 〉 ∈�L, then
〈〈M, v〉 , {ϕ}〉 ∈�L.
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De�nition 2.11. A logic L2 is said to be an extension of a logic L1 i� for
each �rst-order signature σ, L1 (σ) ⊆ L2 (σ), and for each structure M for
σ, an assignment v in M , and a set T of formulas in L1 (σ): M, v �L2 T if
M, v �L1 T .

De�nition 2.12. Second-order logic is the following extension of �rst-order
logic. For each σ, the language LSO (σ) is obtained by augmenting L1 (σ)
by new relations variables: for each i ∈ N, Ri

0, R
i
1, ... are relations variables

symbols of arity i, and functions variables: for each i ∈ N, F i
0, F

i
1, ... are

functions variables symbols of arity i. To the usual de�nition of w�s of
L1 (σ) we add the following clauses:

� If F i is a i-ary function variable and t1, ..., tk are terms, then the ex-
pression F it1, ..., tk is a term.

� If Ri is a i-ary relation variable and t1, ..., tk are terms, then the expres-
sion Rit1, ..., tk , also denoted by (t1, ..., tk) ∈ Ri, is an atomic formula.

� If X is a relation variable or a function variable, and ϕ is a formula,
then ∀Xϕ and ∃Xϕ are formulas.

The standard semantics for second-order logic is de�ned as follows: the in-
terpretations of the �rst-order quanti�ers and the logical connectives are the
same as in �rst-order logic. An assignment assigns to each relation variable
Ri a i-ary relation on the domain, and to each function variable F i a i-ary
function on the domain. The satisfaction relation is then extended in the
natural way.

For simplicity, we usually treat second-order logic without the addition
of the functions variables, retaining only the relations variables. This is not
an essential restriction since n-ary functions can be considered as special
(n+ 1)-ary relations.
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3 First-order languages augmented by the TC

operator

We present new types of logics created by adding to standard �rst-order
logic the transitive closure operator. Before doing this, we �rst should have a
basic understanding of what this operator means. Thus, we start by formally
de�ning the transitive closure of a binary relation.

De�nition 3.1. Let X be a set and R ⊆ X ×X be a binary relation on X.
The transitive closure operator TCR of the relation R is the smallest relation
TCR ⊆ X ×X such that the following holds:

1. R ⊆ TCR

2. TCR is transitive.

The relation TCR exists for any binary relation R. To see this, note
that there exists at least one transitive relation containing R, the trivial one:
X ×X. Furthermore, the intersection of any family of transitive relations is
again transitive. Hence, the transitive closure of R is the intersection of all
transitive relations containing R.

De�nition 3.1 is an impredicative de�nition. A more constructive, pred-
icative characterization can be obtain as follows:

Proposition 3.2. Let X be a set and R ⊆ X × X be a binary relation on
X. The transitive closure operator TCR of the relation R is de�ned by

TCR =
⋃
n∈N+

Rn

where Rn is de�ned by

Rn =

{
R if n = 1

Rn−1 ◦R otherwise

Next, we embed this concept into a logical framework. The essential
idea is that one may treat a �rst-order formula with two (assigned) free
variables as a de�nition of a binary relation. Below are the corresponding
formal de�nitions of a �rst-order logic augmented by the TC operator, and
its semantics.
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De�nition 3.3.

� Let σ be a signature for a �rst-order language with equality. The lan-
guage LTC (σ) is de�ned as the �rst-order language based on σ, L (σ),
with the addition of the TC operator de�ned by:
for any formula ϕ in L (σ), x, y distinct variables, and s, t terms,
(TCx,yϕ) (s, t) is a formula in LTC (σ). The free occurrences of x and
y in ϕ become bound in this formula.

� Let M =< D, I > be a structure for σ and v an assignment in M .
The pair 〈M, v〉 is said to satisfy (TCx,yϕ) (s, t) (denoted byM, v |=LTC

(TCx,yϕ) (s, t)) if and only if there exists ao, ..., an ∈ D such that v[s] =
a0, v[t] = an, and ϕ is satis�ed by M and v[x := ai, y := ai+1] for
0 ≤ i ≤ n − 1. The logic obtained is called ancestral logic and it is
denoted by LTC .

The �rst (as far as we know) to suggest expanding �rst-order logic by the
TC operator was R.M. Martin in [4, 5]. Actually, Martin used a generalized
form of the transitive closure operator. He expended �rst-order logic by
adding for each n ∈ N a TCn operator which when applied to an 2n-ary
predicate produce a new 2n-ary predicate.

De�nition 3.4.

� Let σ be a signature for a �rst-order language with equality. The lan-
guage LTC∗ (σ) is de�ned as the �rst-order language based on σ, L (σ),
with the addition of the TCn operators for each n ∈ N, where the latter
is de�ned as follows:
for any formula ϕ in L (σ), x1, ..., xn, y1, ..., yn distinct variables, and
s1, ..., sn, t1, ..., tn terms,

(
TCn

x1,...,xn,y1,...,yn
ϕ
)

(s1, ..., sn, t1, ..., tn) is a for-
mula in LTCn (σ).1The language LTCn (σ) is the language obtained by
adding only the TCn operator for a speci�c n.

� The semantics for this new types of formulas is a trivial generalization
of De�nition 3.3, only this time we need to refer to vectors of length n
of terms or variables. We shall denote the logic obtained by adding to
�rst-order logic all the operators TCn for n ∈ N by LTC∗ , and the logic
obtained by adding only the TCn operator for a speci�c n by LTCn .

1Note that the TC operator of de�nition 3.3 is TC1.
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In [3], J. Myhill presented a �rst-order logic augmented only by the op-
erator TC1, but together with the introduction of ordered pairs into the
language. The expressive power of the logic presented by Martin turns out
to be the same as that of the logic presented by Myhill.

In the semantics (TCx,yϕ) (s, t) requires that there should be at least one
ϕ-step between s and t. However, both Martin and Myhill chose to take as
primitive the re�exive TC operator, RTC.

De�nition 3.5. For each �rst-order signature σ, the language LRTC (σ) is
de�ned in the same way as LTC (σ) replacing TC by RTC. Let
M =< D, I > be a structure for σ and v an assignment in M . 〈M, v〉 is said
to satisfy (RTCx,yϕ) (s, t) i� s = t or there exists ao, ..., an ∈ D such that
v[s] = a0, v[t] = an, and ϕ is satis�ed by M and v[x := ai, y := ai+1] for
0 ≤ i ≤ n− 1. Similarly, we denote the obtained logic by LRTC .

The de�nitions of LRTC∗ and LRTCn correspond to the de�nitions of LTC∗
and LTCn (see 3.4), replacing the operator TC with RTC.

Proposition 3.6. The two forms of the transitive closure operator are de-
�nable in terms of each other.

Proof. The re�exive transitive closure operator, RTC, is de�nable using the
non-re�exive form by:

(RTCx,yϕ) (s, t) := (TCx,yϕ) (s, t) ∨ s = t

and the non-re�exive TC operator is de�nable using either of the following
3 forms (which can be easily shown to be equivalent):

(TCx,yϕ) (s, t) : = ∃z
(
ϕ

{
s

x
,
z

y

}
∧ (RTCx,yϕ) (z, t)

)
= ∃z

(
(RTCx,yϕ) (s, z) ∧ ϕ

{
z

x
,
t

y

})
= ∃z∃u

(
(RTCx,yϕ) (s, z) ∧ ϕ

{
z

x
,
u

y

}
∧ (RTCx,yϕ) (u, t)

)
Where u, v are fresh variables.

The same connection holds also between the two generalized forms of the
transitive closure: TCn and RTCn.
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One di�erence between the two forms is their ability to de�ne quanti�ers.

Proposition 3.7. The existential quanti�er can be de�ned using the TC
operator, while it cannot be de�ned using the RTC operator.

Proof. By using the TC operator we can de�ne:

∃xϕ :=
(
TCu,v

(
ϕ
{u
x

}
∨ ϕ

{v
x

}))
(s, t)

Where u, v are two fresh variables (not occurring in ϕ). Note that s and t can
be any two terms, yet in order to keep the usual condition of not having x
occur free in ∃xϕ we should take s and t to be closed terms. (This is possible
of course i� the language contains a constant symbol).

To see that the existential quanti�er cannot be de�ned using the RTC
operator, take σ to consist of a constant symbol 0 and a unary predicate
symbol P . We shall prove that each quanti�er-free sentence ψ in LσRTC is
logically equivalent to one of the following four forms: P (0), ¬P (0), 0 = 0
or 0 6= 0. The proof is carried out by induction on ψ. If ψ is an atomic
sentence then it is P (0) or 0 = 0, and the claim trivially holds. Assume that
for the sentences ϕ and φ the claim holds. If ψ = ¬ϕ then if ϕ is equivalent
to P (0) then ψ is equivalent to ¬P (0) and vice verse; and if ϕ is equivalent
to 0 = 0 then ψ is equivalent to 0 6= 0 and vice verse. If ψ = ϕ ∧ φ then
there are several options. If one of ϕ, φ is equivalent to 0 6= 0, then ψ is
equivalent to 0 6= 0 as well. If none of ϕ, φ are equivalent to 0 6= 0 and one
of them, say ϕ, is equivalent to 0 = 0, then ψ is equivalent to φ which by the
induction hypothesis is equivalent to one of the four forms. If none of ϕ, φ
are equivalent to 0 6= 0 or 0 = 0 there can be two cases: if both are equivalent
to the same sentence, then ψ is equivalent to that very sentence; otherwise,
ψ is equivalent to P (0) ∧ ¬P (0), i.e. to 0 6= 0. Similar arguments apply for
the remaining connectives. If ψ = (RTCx,yϕ) (0, 0) for some formula ϕ, then
by the de�nition of the re�exive transitive closure operator ψ is equivalent
to 0 = 0. Since ∃xP (x) is obviously not logically equivalent to any of the
four sentences, we get that the existential quanti�er cannot be de�ned in the
quanti�er-free fragment of LσRTC .

In general, the TC operator is not �rst-order de�nable. However, there
are cases in which there is a �rst-order sentence equivalent to (TCx,yϕ) (s, t).
The obvious case is when ϕ is a valid formula, since then (TCx,yϕ) (s, t) is
also a valid formula. This case is a special case of the following type of
formulas.
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De�nition 3.8. Let ϕ be a formula in L1 (σ). ϕ is called a transitive formula
if for every structureM for σ, every assignment v forM , and every a, b, c ∈ D:
if M, v [x := a, y := b] |= ϕ and M, v [x := b, y := c] |= ϕ, then
M, v [x := a, y := c] |= ϕ.

Example. The formula P (x)∧P (y) is transitive, while P (x)∨P (y) is not.

The following theorem is obvious.

Theorem 3.9. Let ϕ be a transitive formula and s,t terms in L1 (σ). For
every structure M for σ and assignment v for M :

M, v |= (TCx,yϕ) (s, t) ⇐⇒ M, v |= ϕ

{
s

x
,
t

y

}
Corollary 3.10. If ϕ is a transitive formula in L1 (σ), then (TCx,yϕ) (s, t)
is de�nable in L1 (σ).

As seen in Proposition 3.7, ∃xP (x) := (TCu,v (P (u) ∨ P (v))) (s, t). Thus,
P (u) ∨ P (v) is an example of a non-transitive formula whose transitive clo-
sure is �rst-order de�nable. We leave it as an open problem to characterize
the set of �rst-order logic formulas whose transitive closure is de�nable in
�rst-order logic.

Next we show that the TC operator is not �rst-order de�nable in the
general case. Thus by adding it to a �rst-order language we truly enlarge the
expressive power of the logic.

Theorem 3.11. Let {R, c} ⊆ σ where R is a binary relation symbol and c a
constant symbol. There is no sentence ψ in L1 (σ) such that for any structure
M for σ: M |= ψ i� M |=LTC

(TCx,yR (x, y)) (c, c).

Proof. Assume that there is a sentence ψ in L1 (σ) such that for each struc-
ture M for σ: M |=L1 ψ i� M |=LTC

(TCx,yR (x, y)) (c, c). Next we formalize
sentences that state that for each natural number n there is no path (of length
n or smaller) connecting I [c] to itself in the interpretation of R. Formally,
de�ne:

φ0 := ¬R (c, c)
...

φn := ¬∃x1...∃xn
(
R (c, x1) ∧

∧
1≤i≤n−1

R (xi, xi+1) ∧R (xn, c)

)
11



Informally speaking, the set {φn | 0 ≤ n} express that there is no R-path
from c to itself. Thus, the (in�nite) set T = {φn | 0 ≤ n} ∪ {ψ} is not
satis�able. However, we will prove that any �nite subset of T is satis�-
able. Consider an arbitrary �nite subset T ′ ⊂ T . Then, there is a 0 ≤ n0

such that: T ′ ⊆ T ∗ = {φn | 0 ≤ n ≤ n0} ∪ {ψ}. The satis�ablity of T ∗

surely implies the satis�ablity of T ′. To prove that T ∗ has a model we
look at a structure whose domain is {0, 1, ..., n0} so that I [c] = 0, I [R] =
{(x, y) | y = x+ 1 or x = n0 + 1 and y = 0}. We have to show that M |= T ∗,
i.e. that M is a model for each θ ∈ T ∗.

� If θ = ψ then M is a model of θ according to the de�nition of the
structure and the TC operator.

� If θ = φn for 0 ≤ n ≤ n0 then M is a model of θ i� there is no R-path
of length smaller or equal to n from I [c] to itself. Obviously M has
this property since the R-path starting from 0 and leading back to 0 is
the only R-path connecting I [c] to itself, and it is of length n0 +1 > n.

To sum up, we have shown that M is a model for T ∗. Since T ∗ is satis�able
so is T ′. Using the compactness theorem for �rst-order logic we can conclude
that T is also satis�able, which leads to a contradiction. Thus, the transitive
closure operator is not de�nable in �rst-order logic.

Though the TC operator cannot be de�ned in �rst-order logic, it is de-
�nable in second-order logic.

Proposition 3.12. The RTC operator is de�nable in monadic second-order
logic, hence also the TC operator is so de�nable.

Proof. Let X be a monadic relation variable. We have that

(RTCx,yϕ) (s, t) ≡
∀X ((Xs ∧ ∀x∀y (ϕ (x, y) ∧Xx→ Xy))→ Xt)

From Proposition 3.6 we get that the TC operator is also second-order de-
�nable.

The concept of the TC operator is embedded in our understanding of
the natural numbers. The fact that the reasoning needed in order to grasp
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the concept of the ancestral is exactly the same as needed in order to un-
derstand basic arithmetic naturally leads to exploring the expressive power
of various �rst-order languages for arithmetic augmented by the TC operator.

Theorem 3.13. In L{0,s}TC , let ψ be the conjunction of the axioms for the
successor function, 2.1 and 2.2. Let ϕ be the following axiom:

ϕ := ∀x (x = 0 ∨ (TCw,u (s(w) = u)) (0, x)) (3.1)

The set T = {ψ, ϕ} categorically characterize the natural numbers.

Proof. Clearly, the structure N whose domain is the natural numbers and
the interpretation of the constant ′0′ is zero and and the interpretation of
the function symbol s is the successor function, is a model for T . Standard
arguments show that it is the only model of T (up to isomorphism).

Although the natural numbers can be categorically characterized in L{0,s}TC ,
the expressive power of this language is too weak (for example, + is not
de�nable in it, as will be shown below). We present some results regarding
the expressive power of �rst-order languages for arithmetic with the TC
operator.

Theorem 3.14.

1. All recursive functions and relations are de�nable in L{0,s,+}TC . The same

result holds in L{0,s}TC2
.

2. In the absence of ordered pairs one cannot de�ne + in L{0,s}TC .

Proof.

1. Obviously, it is su�cient to show that addition and multiplication are
de�nable. The division relation is de�nable in L{0,s,+}TC since2

N |=LTC
u | v ↔

v = 0 ∨ (TCx,y (x+ u = y)) (0, v)

2The de�nition in [1] has a minor inaccuracy in handling the case where v = 0.
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We also have that

N |=LTC
x = y2 ↔

y | (x+ y) ∧ s (y) | (x+ y) ∧
∀z ((TCu,vv = s (u)) (z, x+ y) ∧ y | z → ¬ (s (y) | z))

This formula is obviously true in case y 6= 0, because x = y2 i� the
least common multiple of x, y is y ∗ (y + 1).On the other hand, if y = 0,
then since 0 divides only 0, 0 | (x+ 0) implies that x = 0. In this case
x + y = 0, and since 0 is divided by any number (in particular by 1)
we get that s (y) | (x+ y). The formula (TCu,vv = s (u)) (z, x+ y) is
equivalent to z < x + y, which in this case is z < 0, and since there is
no such z the last conjunct holds.

From the last observation it easily follows that ∗ is de�nable in L{0,s,+}TC

as follows:

N |=LTC
x = y ∗ z ↔

∃u∃v∃w
(
u = y2 ∧ v = z2 ∧ w = (y + z)2 ∧ w = (((u+ v) + x) + x)

)
The fact that the same result holds in L{0,s}TC2

follows from the fact that
+ is de�nable in this language by:

N |=LTC2
x = y + z ↔

(RTCx1,x2,y1,y2 (y1 = s (x1) ∧ y2 = s (x2))) (0, y, z, x)

In L{0,s}TC2
the same method can be applied to get a more direct de�nition

of multiplication in terms of addition, for instance:

N |=LTC2
x = y ∗ z ↔

(RTCx1,x2,y1,y2 (y1 = s (x1) ∧ y2 = x2 + z)) (s (0) , z, y, x) ∨ (y = 0 ∧ x = 0)

2. By proposition 3.12 we have that the logic L{0,s}TC is interpretable in
the monadic second-order theory of the successor function (see [21]).
The decidability of the monadic second-order theory of the successor
function then implies the decidability of the set of formulas in L{0,s}TC

which are valid in N. Assuming that + is de�nable in L{0,s}TC , we get that

14



the set of formulas in L{0,s,+}TC which are valid in N is decidable. Yet,
by (1) we have that all recursive functions and relations are de�nable

in L{0,s,+}TC , therefore the set of formulas which are valid in N in L{0,s,+}TC

is not even arithmetical.

Note 3.15. The proof of the �rst part of 3.14(1) is a slight correction to that
in [1]. The second part of 3.14(1) is essentially due to Quine [18] (only Quine

used a variation of L{0,s}TC with ordered pairs). 3.14(2) is again due to [1].
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4 Ancestral logic vs. other extensions of �rst-

order logic

In the last chapter we described ancestral logic. However, there are other
logics between �rst-order logic and second-order logic that might be used
for the same purposes. The main strength of full second-order logic is its
ability to characterize important mathematical structures and concepts that
�rst-order logic cannot. Examples are provided by natural numbers and the
concept of �nitude. In this chapter we will present several other logics, in
addition to those presented before, that presuppose the notion of �nitude
or natural number, each in a di�erent way. After characterizing each of the
logics, we show how there is a sense in which they are all equivalent. Then
their expressive resources are assessed and compared to one another.

Most of the results of this chapter are stronger versions of results which
appear in [6]. Theorem 4.23 is taken from [16].

4.1 The logics

Let us start by presenting the logics which will be examined in this chapter
and then show how the concept of the natural number can be characterized
in each of them.

Weak second-order logic

We have argued that full second-order logic has many disadvantages, yet we
can examine a weaker version of it called (unsurprisingly) weak second-order
logic. In this logic the relation variables and the second-order quanti�ers
range only over �nite relations.

De�nition 4.1 (LWSO).

� The language is the same as that of second-order logic.

� The semantic satisfaction relation is similar to that of second-order
logic with the exception that any assignment v for a structure M is
restricted to assign only a �nite subset of the domain to each relation
variable. i.e. if X is an n-place relation variable, then v [X] is a �nite
subset of Dn.
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The concept of �nitude can be expressed in LWSO. More precisely, for any
formula ϕ such that x ∈ Fv [ϕ], it is possible to assert that there is a �nite
number of elements x which satisfy ϕ. This can be accomplished by a formula
of the form: ∃X∀x (Xx↔ ϕ). It follows that LWSO is indeed more expressive
than �rst-order logic, since the latter can't express �nitude.

ω-logic

Perhaps the logic that captures the notion of the natural numbers in the
most straightforward manner is ω-logic. There are several di�erent equivalent
variations of ω-logic. We follow [11] and add to a �rst-order signature a new
unary predicate N which will be used to distinct the natural numbers. The
addition of this predicate allows us to quantify only over the natural numbers
using ∀x (N (x)→ ...) or ∃x (N (x) ∧ ...).

De�nition 4.2 (Lω).

� The language: for each σ, the language Lω (σ) is obtained by augment-
ing L1 (σ) with a new unary predicate symbol N as well as the constant
symbol 0 and the unary function symbol s.

� The semantic satisfaction relation is de�ned as follows. De�ne M to
be an ω-structure if the interpretation of N in M is isomorphic to the
natural numbers and 0 and s are standardly interpreted. We restrict
the usual �rst-order semantic satisfaction relation in Lω to deal only
with ω-structures.

Cardinality logic

Another way to obtain the concept of �nitude in a direct way is by adding a
new type of quanti�er, Q0, called a �cardinality quanti�er�. The new type of
formula 'Q0xϕ' may be read �there are in�nitely many x for which ϕ holds�.

De�nition 4.3 (LCard).

� The language: for each σ, the language LCard (σ) is obtained by aug-
menting L1 (σ) with a new cardinality quanti�er Q0.
To the usual de�nition of w�s of L1 (σ) we add the following clause: if
ϕ is a formula and x is a variable, then Q0xϕ is a formula.
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� The semantic satisfaction relation of �rst-order logic is extended such
that M, v |=LCard

Q0xϕ i� there are in�nitely many distinct x-variant
assignments, v′, so that M, v′ |= ϕ.

In LCard we can also express �nitude, for example by ¬Q0xϕ. Thus we get
that LCard is also more expressive than �rst-order logic.

Henkin quanti�ers

The next logic, suggested in [16], also extends �rst-order logic by adding new
types of quanti�ers. In this case we add quanti�ers called Henkin quanti�ers.
The motivation behind these types of quanti�ers is that in any formula in
a prenex form, each existentially quanti�ed variable depends on all of the
universally quanti�ed variables that come before it. Therefore, it makes
sense to introduce independence between some of the bound variables in a
string of quanti�ers. We shall not explore here the logic obtained by adding
all types of Henkin quanti�ers, but a fragment of it obtained by adding only
special type of Henkin quanti�ers, called narrow Henkin quanti�ers. This is
due to the special connection between narrow Henkin quanti�ers and the TC
operator which will be discussed in the next sections.

De�nition 4.4 (LNH).
� The language: for each σ, the language LNH (σ) is a �rst-order lan-
guage augmented by boolean variables α, β, ... which semantically are
intended to range over {0, 1} (this means that we are dealing with a
two-sorted language whose second sort is to be interpreted as {0, 1} in
all structures). We add to L1 (σ) the following narrow Henkin quanti-
�ers: (

∀x̄ ∃α
∀ȳ ∃β

)
where α, β are boolean variables and x̄, ȳ are tuples of individuals or
boolean variables.

x̄ and ȳ are called compatible if they are of the same length and have
variables of the same type at corresponding positions. We write x̄ = ȳ
as an abbreviation for

∧
i

(xi = yi) provided that x̄ and ȳ are compatible.

To the usual de�nition of w�s of L1 (σ) we add the following clause: if
ϕ is a formula and QNH is a narrow Henkin quanti�er, then QNHϕ is
a formula.
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� The semantic satisfaction relation is de�ned as follows:
M, v |=LNH

QNHϕ (x̄, ȳ, α, β) i� M, v |= ∃f∃g∀x̄∀ȳϕ (x̄, ȳ, f (x̄) , g (ȳ))
in the standard second-order semantics. In the second-order form se-
mantics of such a quanti�er, the interpretation of f, g are functions
whose range is {0, 1}.

4.2 Characterizing the natural numbers

The next task is to assess and compare the expressive power of these logics.
It is known that �rst-order logic cannot categorically characterize the natural
numbers. Let us �rst show that all of the logics of this chapter can.

Theorem 4.5. Let L be one of the logics presented in this chapter and the
previous one. In LσPA there is a sentence ϕ such that any model of ϕ is
isomorphic to the natural numbers (with the usual interpretation of functions
and relations symbols)3

Proof. In Lω we can obtain the desired characterizing sentence simply by
∀xN (x). In order to achieve characterization of the natural numbers in the
other logics de�ne ψ to be the conjunction of 2.1, 2.2, 2.3 and 2.4. We must
demand that the domain contains only 0, s(0), s(s(0)), .... Therefore, we shall
present in each of them a formula θ such that ψ ∧ θ is the desired sentence.

In LTC we have already seen (Theorem 3.13) that 3.1 asserts that every-
thing is a successor-ancestor of 0.

In LNH the same assertion can be formalized. To show this notice that
the formula (TCw,u (s(w) = u)) (0, x) is intuitively equivalent to:∨

0≤n

∃z0...∃zn (z0 = 0 ∧ zn = x ∧ s(z0) = z1 ∧ ... ∧ s(zn−1) = zn)

which is equivalent to:

¬∃f (f (0) = 1 ∧ f (x) = 0 ∧ ∀x∀y (f (x) = 1 ∧ s(x) = y → f (y) = 1))

This second-order formula is equivalent to the following formula in LNH :

¬
(
∀u ∃α
∀v ∃β

)
((u = v → α = β) ∧ (u = 0→ α = 1)∧

(u = x→ α = 0) ∧ (α = 1 ∧ s(u) = v → β = 1))

3These results appear in [16, 6].
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Hence, the sentence in LTC can be formalized in LNH by:

∀z¬
(
∀x1 ∃y1

∀x2 ∃y2

)
[(x1 = x2 → y1 = y2) ∧ (x1 = 0→ y1 = s (0))∧

(x1 = z → y1 = 0) ∧ (y1 = s (0) ∧ s(x1) = x2 → y2 = s (0))]

In LCard take θ to be the following sentence:

∀y (¬Q0x∃z (x+ z = y))

∃z (x+ z = y) asserts that x ≤ y, thus θ asserts that for every object x
there are only �nitely many objects smaller or equal to x. Let us show
that this assertion together with ψ su�ce. Assume that M = 〈D, I〉 is
a model for ψ ∧ θ. De�ne g : N → D recursively by g (0) = I [0] and
g (m+ 1) = I [s] [g (m)]. The function g preserves +. Suppose that g is not
onto D, and choose a ∈ D which is not in the image of g. From the successor
axiom we �nd that it is possible to de�ne a sequence 〈xi | i ∈ N〉 such that
x0 = a and I [s] [xi+1] = xi for every i ∈ N. This clearly contradicts θ. Hence
g is onto, so it is an isomorphism from the structure N to M .

In LWSO we add a sentence which states that for each x the set that
contains all the objects smaller or equal to x is �nite, which is:

∀x∃X∀y (∃z (x+ z = y)→ Xy)

In each case we found a formula θ such that any model of ψ∧θ is isomorphic
to the natural numbers.

The last theorem leads to the following corollary.

Corollary 4.6. The upward Lowenhiem-Skolem theorem fails for these logics
and they are not compact. Moreover, any formal deductive system which is
sound for one of these logics is incomplete.

Proof. Obviously, the existence of a characterization for the natural numbers
gives a refutation for the upward Lowenhiem-Skolem theorem as well as for
the compactness theorem for these logics.

Let F be any e�ective deductive system that is sound for one of these
logics. Let φ be the sentence that characterize the natural numbers in this
logic (such a sentence exists in each of the logics due to Theorem 4.5). Let
T = {ψ |`F φ→ ψ}. Since F is e�ective, the set T is recursively enumerable,
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and since F is sound,N |=T . It follows from Godel's incompleteness theorem
that the collection of valid �rst-order sentences of arithmetic is not recursively
enumerable. So let ϕ be a valid sentence of �rst-order arithmetic that is not
in T . Then, φ→ ϕ is not provable in F , but it is a logical truth. Therefore,
F is not complete.

4.3 Comparing the expressive power of the logics

Next we compare the expressive power of the logics of this chapter. In the
comparison theorems in this section we shall only present full proofs for
theorems concerning ancestral logic, while only stating the others.

Given two logics, the intuitive question we seek to answer is whether
one logic can express all the assertions that can be expressed in the other.
The follow up question is obviously: when given two logics, what are the
means necessary for each logic to express a certain assertion? In order to
answer these questions we �rst have to clarify what exactly do we mean by
�expressing an assertion�.

De�nition 4.7. Let S be a class of structures for a �rst-order signature σ,
and let L be a logic. The class S is said to be strongly de�nable in Lσ if
there is a set of sentences Γ in Lσ, such that for every structure M for σ:
M |=L Γ if and only if M ∈ S. The class S is said to be de�nable in Lσ if
there is a signature σ′ ⊇ σ, and a set of sentences Γ in Lσ′ , such that for
every structure M ′ for σ′: M ′ |=L Γ if and only if there is a structure M ∈ S
such that M ′ is an expansion of M .

Note. In [6], Shapiro uses a slightly di�erent approach to what it means to
de�ne a set of structures. The di�erence from the last de�nition is that he
took Γ to be a singleton. i.e. a class of structures is to be de�ned by a
single sentence. Since any �nite set of sentences can be regarded as a single
sentence (the conjuncture of the sentences), the only di�erence between the
de�nitions is the possibility to de�ne a class of structures by an in�nite set
of sentences.

Following the last de�nition, an �assertion� is to be understood as a class
of structures S for a signature σ, and �expressing an assertion� in a logic is
to be understood as saying that S is de�nable or strongly de�nable in the
logic. The de�nitions of de�nability and strong de�nability lead to di�erent
methods of comparison between logics.
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4.3.1 Strong inclusion

We start with the question what are the conditions under which two logics
should be called equivalent. The �rst possible answer is that the two logics
have to be able to strongly de�ne the same classes of structures. This leads to
the �rst (and strongest) form of comparison between two logics: the existence
of a signature-preserving translation between the logics.

De�nition 4.8. Let L1,L2 be two logics (L1 is not Lω). We say that L2

strongly includes L1 (L2

s

≥ L1) if given a �rst-order signature σ, every set of
structures strongly de�nable in Lσ1 can be strongly de�ned in Lσ2 .

Because of the special nature of Lω, we must extend the above de�nition
a bit to accommodate Lω.

De�nition 4.9. Let L be a logic (other than Lω). We say that L strongly
includes Lω if given a �rst-order signature σ, every set of structures strongly
de�nable in Lσω can be strongly de�ned in Lσ∪{N,s,0}.

We say that L1 and L2 are strongly equivalent (L1
s≡ L2 ) if both L2

s

≥ L1

and L1

s

≥ L2 . We write L2

s
> L1 for L2

s

≥ L1 and L1

s

� L2.

Note. Obviously, the strong inclusion relation is transitive, i.e. if L1,L2,L3

are three logics such that L2

s

≥ L1 and L3

s

≥ L2, then L3

s

≥ L1.

Proposition 4.10. Let σ be a �rst-order signature. If for each sentence ψ
in L1 (σ), there is a sentence ψ′ in L2 (σ) such that for every structure M ,
M |=L1 ψ i� M |=L2 ψ′, then L2 strongly includes L1.

Proof. Let σ be a �rst-order signature and let K be a set of structures for
σ strongly de�ned in Lσ1 by a set of sentences Γ. By the assumption, for
each sentence ψ in L1 (σ), there is a sentence ψ′ in L2 (σ) such that for
every structure M , M |=L1 ψ i� M |=L2 ψ′. It is easy to see that the set
Γ′ = {ψ′ | ψ ∈ Γ} de�nes the set K in Lσ2 .

Next we investigate which
s

≥ holds between LTC ,LTC∗ and the other logics
of this chapter.

Theorem 4.11. LTC∗
s
> LTC .
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Proof. Obviously LTC∗
s

≥ LTC , since LTC (σ) ⊆ LTC∗ (σ) and their semantic
satisfaction relation are the same. The converse does not hold. To see this,
recall that using the signature σ = {0, s} addition is de�nable in LσTC∗ ,
whereas it is not de�nable in LσTC (see 3.14(2)).

Theorem 4.12. LWSO

s

≥ LTC∗ .

Proof. For each formula ϕ in LTC∗ de�ne a formula ϕ′ in LWSO by induction
on the complexity of ϕ.

� If ϕ is atomic then ϕ′ is ϕ.

� (ϕ→ ψ)′ is ϕ′ → ψ′

� (¬ϕ)′ is ¬ϕ′

� (∀xϕ)′ is ∀xϕ′

Now we need to assign to each formula of the form
(
TCk

x̄,ȳϕ
)

(s̄, t̄) a formula
in LWSO. Let us denote the formula which correlates to ϕ in LWSO by ϕ′.
We use the notation Rx̄ȳ as an abbreviation for Rx1...xky1...yk , ∀x̄ as an
abbreviation for ∀x1...∀xk and x̄ = ȳ as an abbreviation for

∧
i<k (xi = yi).

We can de�ne the formula that correlates to
(
TCk

x̄,ȳϕ
)

(s̄, t̄) by stating that
there is a �nite 2k-ary relation R such that:

� R represents a sub-relation of the relation represented by ϕ′.

ψ1 := ∀x̄∀ȳ (Rx̄ȳ → ϕ′(x̄,ȳ))

� R represents a graph of a function f on a subset of the domain.

ψ2 := ∀x̄∀ȳ∀z̄ (Rx̄ȳ ∧Rx̄z̄ → ȳ = z̄)

� t̄ is in the range of f .
ψ3 := ∃x̄Rx̄t̄

� s̄ is in the domain of f .
ψ4 := ∃x̄Rs̄x̄

� s̄ is not in the range of f .

ψ5 := ¬∃x̄Rx̄s̄
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� if ȳ is in the range of f and ȳ 6= t̄ then ȳ is in the domain of f .

ψ6 := ∀x̄∀ȳ (Rx̄ȳ ∧ ȳ 6= t̄→ ∃z̄Rȳz̄)

Now, de�ne
((
TCk

x̄,ȳϕ
)

(s̄, t̄)
)′

= ∃R (ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4 ∧ ψ5 ∧ ψ6). A straight-
forward induction shows that for any ϕ of LσTC∗ , if M is a structure for
σ, v is an assignment to the �rst-order variables, and v′ an assignment in
LσWSO that agrees with v on the �rst-order variables, then M, v |=LTC∗ ϕ i�

M, v′ |=LWSO
ϕ′. Thus, by Proposition 4.10 we get that LWSO

s

≥ LTC∗ .

Theorem 4.13. LTC
s

≥ Lω.

Proof. De�ne:

φ : = ∀x (N (x)→ s (x) 6= 0) ∧ ∀x∀y (N (x) ∧N (y) ∧ s (x) = s (y)→ x = y)

∧∀x (N (x) ∧ x 6= 0→ ∃y (N (y) ∧ s (y) = x))

Conjoin φ with the assertion that every element in N is a descendant of 0
under the successor relation:

ϕ := ∀y (N (y)↔ (TCw,u (s(w) = u)) (0, y))

For each structureM for σ = {N, s, 0},M �LTC
φ∧ϕ i�M is an ω-structure.

Then, for each sentence ψ in Lω the equivalent sentence in LTC is ψ ∧ϕ∧ φ.
Thus, by Proposition 4.10 we get that LTC

s

≥ Lω.

The de�nition of strong inclusion prevents us from expanding our signa-
ture when looking for a translation between two logics. As a result, given a
speci�c signature there are di�erences in the expressive power of the logics.

Theorem 4.14. LCard
s

� LTC.

Proof. Let σ = {0, 1,+, ·, <} be the signature of real analysis. By Tarski's
theorem we have a set of sentences T in L1 (σ) which strongly de�nes real
closed �elds. Let us de�ne a sentence in LTC which asserts that for every
number there is a natural number larger then it:

ϕ := ∀x∃y (x < y ∧ (TCx,y (y = x+ 1)) (1, y))
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We get that M |= T ∪ {ϕ} i� M is an archimedean real closed �eld. As-

sume that LCard
s

≥ LTC . Thus, there is a set of sentences Γ in LσCard which
de�nes the same class of structures as T ∪ {ϕ}, i.e. Γ is satis�ed by all
archimedean real closed �elds and only them. On the other hand, by a theo-
rem of Cowles[14] we get that for each formula θ of LCard above σ, there is a
quanti�er-free formula θ′ with the same free variables as θ, such that θ′ ↔ θ
holds in all models of the theory of real closed �elds. Let Γ′ be the set ob-
tained by replacing each ψ ∈ Γ by its quanti�er-free equivalent ψ′. We now
get that Γ′ is satis�ed by all and only archimedean real closed �elds. This
leads to a contradiction, since by the usual compactness argument we get
that there is no �rst-order theory which is satis�ed by only those �elds.

Theorem 4.15. LTC∗
s

� LCard and LTC∗
s

� LWSO .

Proof. Let σ be a �rst-order signature with equality which contains only
monadic predicates, and let ϕ be a formula in LTC∗ (σ). For any structure
M for σ and assignment v for M : if there is a natural number m such that

M, v |= ∃z̄1...∃z̄m
(
z̄1 = s̄ ∧ z̄m = t̄ ∧ ϕ

{
z̄1
x̄
, z̄2
ȳ

}
∧ ... ∧ ϕ

{
¯zm−1

x̄
, ¯zm
ȳ

})
where

z̄1,..., z̄m are vectors of fresh variables, then M, v |=LTC∗

(
TCk

x̄,ȳϕ
)

(s̄, t̄) .

On the other hand, if M, v |=LTC∗

(
TCk

x̄,ȳϕ
)

(s̄, t̄) we get as a consequence
of the decidability proof of monadic predicate calculus (see Dreben and
Goldfarb[15]) that there is a natural number m such that:

M, v |= ∃z̄1...∃z̄m
(
z̄1 = s̄ ∧ z̄m = t̄ ∧ ϕ

{
z̄1
x̄
, z̄2
ȳ

}
∧ ... ∧ ϕ

{
¯zm−1

x̄
, ¯zm
ȳ

})
, where

z̄1,..., z̄m are vectors of fresh variables. Therefore, for this signature σ , LσTC∗
is equivalent to L1 (σ). The usual compactness argument establishes that
�nitude cannot be expressed in L1 (σ). Thus, if P is any monadic predicate
symbol in σ, there is no set of sentences in LTC∗ equivalent to QxP (x) of
LCard , or to ¬∃X∀x (Xx↔ P (x)) of LWSO.

Note 4.16. In addition to the results given in Theorems 4.11, 4.12, 4.13,
4.14 and 4.15, the following relations (which are not directly connected with

LTC) hold as well: LWSO

s

≥ LCard , LWSO

s

≥ LNH , LWSO,LCard,LNH
s

≥ Lω,

LCard
s

� LWSO and LCard
s

� LNH . 4

4Proofs can be found in [6, 16].
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4.3.2 Quasi inclusion

From an examination of the cases above in which we do not have strong
inclusion, it seems that they are due to the severe restriction on the signature.
Therefore, a more reasonable method of comparison between the expressive
power of logics is needed. In order to do so we may choose to say that two
logics are equivalent if they can express the same assertions, not necessarily
using the same signature. Two logics will be called equivalent if they are able
to de�ne (practically) the same classes of structures.

In this subsection our interest will be focused on in�nite structures (which
are the relevant structures for the goal of formalizing mathematical reason-
ing). Therefore two logics will be called equivalent in this subsection if they
are able to de�ne practically the same classes of in�nite structures. The in-
tuition here is that, when restricted to in�nite structures, the logics under
study are equivalent using this less strict type of translation.

De�nition 4.17. Let L1,L2 be two logics. We say that L2 quasi includes

L1 (L2

q

≥ L1) if given a �rst-order signature σ, there is a signature σ′ ⊇ σ,
such that every set of in�nite structures de�nable in Lσ1 can be de�ned in

Lσ′2 . We say that L1 and L2 are quasi equivalent (L2

q
≡ L1) if both L2

q

≥ L1

and L1

q

≥ L2 .

Strong inclusion obviously implies quasi inclusion, thus all the positive
theorems from the last subsection holds. However, here we obtain a much
stronger connection between the logics of this chapter.

Theorem 4.18. LWSO, LTC, LTC∗, LCard , LNH and Lω are all quasi equiv-
alent.

Proof. From the strong inclusion theorems, we get that it su�ces to show
that Lω quasi includes LWSO. We show this by adding a way to code �nite
sets. We know that a binary relation can easily code subsets of the domain,
and in general, a (n+ 1)-ary relation can easily code subsets of Dn 5. Yet,
by Cantor's theorem we know that no relation can represent every subset
of the domain. However, if the domain is in�nite, there is a relation which

5If P is a (n+ 1)-ary predicate symbol, de�ne Px = {ȳ | P (x, ȳ)}. P is said to represent
the collection of all sets Px where x ranges over the domain.
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represents all of its �nite subsets. We will show that such a relation can
be characterized in Lω. For each n > 0 let Rn+1 be a (n+ 1)-ary relation
symbol, and let ψ1[Rn+1] be the formula:

ψ1[Rn+1] := ∃x∀ȳ¬Rn+1 (x, ȳ)∧∀x∀ȳ∃z∀w̄
(
Rn+1 (z, w̄)↔

(
Rn+1 (x, w̄) ∨ w̄ = ȳ

))
where ȳ, w̄ are vectors of variables of length n, and w̄ = ȳ is an abbreviation
for

∧
1≤i≤n

(wi = yi). The �rst conjunct asserts that there is a representation

for the empty set in Rn+1, and the second conjunct asserts that if a set X is
represented by Rn+1 then, for any element ȳ, X∪{ȳ} is represented by Rn+1 .
i.e. ψ1[Rn+1] asserts that every �nite subset of Dn is represented by Rn+1. It
remains to ensure that only �nite sets are represented by Rn+1. We introduce
a binary relation K such that K (x, y) entails that N (x) holds, and the
cardinality of Rn+1

y = {z̄ |Rn+1 (y, z̄)} is the natural number corresponding
to x. De�ne ψ3[Rn+1, K] to be the conjunction of the assertion that K (0, y)
holds i� Rn+1

y is the empty set with the assertion that K (s(x), y) holds i�
there are w and z̄ such thatK (x,w), z̄ is not in Rn+1

w , and Rn+1
y = Rn+1

w ∪{z̄}.

ψ3[Rn+1,K] := ∀y
(
K (0, y)↔ ∀z̄

(
¬Rn+1 (y, z̄)

))
∧[

K (s(x), y)↔ ∃w∃z̄
(
K (x,w) ∧ ¬Rn+1 (w, z̄) ∧ ∀ū

(
Rn+1 (y, ū)↔

(
Rn+1 (w, ū) ∨ ū = z̄

)))]
De�ne ψ2[K] to assert that for every y there is an x in N that represents the
cardinality of Rn+1

y .

ψ2[K] := ∀y∃x (N (x) ∧K (x, y))

Now, let ψ[Rn+1, K] be ψ1[Rn+1] ∧ ψ2[K] ∧ ψ3[Rn+1, K] . In any ω-model of
ψ[Rn+1, K], Rn+1 represents the set of all �nite subsets Dn. Let Γ be a set
of sentences in LσWSO such that the symbols K,N and Rn+1 for each n > 0
do not occur in any formula in Γ. We associate a unique fresh �rst-order
variable xnX to each n-ary second-order variable X . For each sentence ϕ in
L2 (σ) we shall de�ne by induction a �rst-order sentence ϕ′ as follows:

� If ϕ is a �rst-order atomic formula then ϕ′ is ϕ.

� If ϕ is a formula of the formXn (t̄) whereXn is a n-ary relation variable
and t̄ is a vector of n terms, then ϕ′ = Rn+1 (xnX , t̄).

� (ϕ→ ψ)′ is ϕ′ → ψ′

� (¬ϕ)′ is ¬ϕ′
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� (∀xϕ)′ is ∀xϕ′

� (∀Xnϕ)′ is ∀xnXϕ′

Take φn :=
∧

0<i≤n
ψ[Rn+1, K]. It is easy to check that for each in�nite structure

M for σ , M |=LWSO
Γ i� there is an expansion of M which satis�es Γ′ ∪

{φk | k ∈ N} in Lω.

Proposition 4.19. The simple Lowenhiem-Skolem theorem, which states
that if a theory has an in�nite model then it has a countable one, holds for
the logics of this chapter.

Proof. A routine check of the usual proof will verify that if the original struc-
ture M is an ω-model, then there is a countable sub-structure M ′ which
satis�es exactly the same sentences as M and is also an ω-model. Thus, the
downward Lowenheim-Skolem theorem holds for Lω. Let L be one of the
logics LWSO, LTC , LTC∗ , LCard or LNH , σ a �rst-order signature and Γ a set
of sentences in Lσ. Let M be a structure for σ such that M |=L Γ. Since
Lω is quasi equivalent to L, there is a set of sentences Γ′ in Lσω such that
M |=Lω Γ′. It follows from the downward Lowenheim-Skolem theorem for Lω
that there is a countable ω-structure M ′ such that M ′ |=Lω Γ′, and again by
the quasi equivalence we get that M ′ |=L Γ.

4.3.3 Inclusion

In this subsection we present the same form of comparison between logics
presented in the last subsection only without the restriction to in�nite struc-
tures. We say that two logics are equivalent if they are able to de�ne the
same classes of structures without preserving signature.

De�nition 4.20. Let L1,L2 be two logics. We say that L2 includes L1

(L2 ≥ L1) if given a �rst-order signature σ, there is a signature σ′ ⊇ σ, such
that every set of structures de�nable in Lσ1 can be de�ned in Lσ′2 . We say
that L1 and L2 are equivalent (L2 ≡ L2 ) if both L2 ≥ L1 and L1 ≥ L2.

We prove a series of theorems from which it will follow that almost all of
the logics of this chapter are equivalent. In order to prove that LTC∗ ≡ LNH
we will need the following 2 lemmas.6

6The following results appear in [19, 16].
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Lemma 4.21. Let an equality bound narrow Henkin quanti�er be a narrow
Henkin quanti�er whose second-order form is equivalent to the following for-
mula: ∃f∀x̄∀ȳψ (x̄, ȳ, f (x̄) , f (ȳ)). Narrow Henkin quanti�ers and equality
bound narrow Henkin quanti�ers can be expressed in terms of one another.

Proof. An equality bound narrow Henkin quanti�er is equivalent to the fol-
lowing narrow Henkin quanti�er:(

∀x̄ ∃α
∀ȳ ∃β

)
(x̄ = ȳ → α = β) ∧ ψ (x̄, ȳ, α, β)

For the other direction, the second-order form semantics of a general narrow
Henkin quanti�er is:

Ψ := ∃f∃g∀x̄∀ȳψ (x̄, ȳ, f (x̄) , g (ȳ))

Now, we can de�ne an equality bound narrow Henkin quanti�er:

Φ := ∃h∀x̄γ∀ȳδ (γ = 1 ∧ δ = 0→ ψ (x̄, ȳ, h (x̄,γ) , h (ȳ, δ)))

We can now see that Φ implies Ψ using the following de�nitions:

f (x̄) = h (x̄, 1) , f (ȳ) = h (ȳ, 0)

Lemma 4.22. Let (X,≤) be a pre-ordered set, and let i : X → X be an
order-reversing function such that for every x ∈ X , i (i (x)) = x and never
both i (x) ≤ x and x ≤ i (x). Then there is a T ⊆ X , closed upwards for ≤,
which contains exactly one of x and i (x) for each x ∈ X .

Proof. Let S consist of all sets A ⊆ X which are closed upwards for ≤, and
contain at most one of x and i (x) for each x ∈ X . S is not empty since it
contains at least the empty set. S is partially ordered by set inclusion. Take
any totally ordered subset C of S. It is easy to see that the set A′=

⋃
A∈C

A

is an upper bound of C. By Zorn's lemma we get that there is a maximal
element in S, say T . Assume that there is y ∈ X such that both y /∈ T and
i (y) /∈ T . WLOG assume that y � i (y). De�ne T ′ = T ∪ {x ∈ X | y ≤ x}.
T ′ is obviously closed upwards for ≤. Assume that there exists z ∈ X such
that both z ∈ T ′ and i (z) ∈ T ′. z and i (z) cannot be both in T . If z /∈ T ,
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then y ≤ z. Thus, i (z) ≤ i (y). But since i (z) ∈ T ′ and T ′ is closed
upwards for ≤, we get that i (y) ∈ T ′. i (y) /∈ T implies that y ≤ i (y),
which contradicts the assumption that y � i (y). Since i (i (x)) = x for
every element x, similar arguments lead to a contradiction in the case that
i (z) /∈ T . Thus, T ′ contains at most one of x and i (x) for each x ∈ X . Since
T ⊂ T ′ (because y ∈ T ′ \ T ), T ′ contradicts the maximality of T . Therefore,
there is no y ∈ X such that both y /∈ T and i (y) /∈ T . Hence, T has all the
required properties.

Theorem 4.23. LTC∗ ≡ LNH

Proof. Let us start by showing that LNH includes LTC∗ . We know that the
following holds: (

TCkx̄,ȳϕ
)

(s̄, t̄) ≡

∃z̄0...∃z̄n
(
z̄0 = s̄ ∧ z̄n = t̄ ∧ ϕ

{
z̄0

x̄
,
z̄1

ȳ

}
∧ ... ∧ ϕ

{
¯zn−1

x̄
,
z̄n
ȳ

})
If we add two constants symbols: 0 and 1 we get the equivalent second-order
formula:

¬∃f (f (s̄) = 1 ∧ f (t̄) = 0 ∧ ∀x̄∀ȳ (f (x̄) = 1 ∧ ϕ (x̄, ȳ)→ f (ȳ) = 1))

This second-order formula is equivalent to the following formula in LNH :

¬
(
∀x̄ ∃α
∀ȳ ∃β

)
((x̄ = ȳ → α = β) ∧ (x̄ = s̄→ α = 1)∧

(x̄ = t̄→ α = 0) ∧ (α = 1 ∧ ϕ (x̄,̄ y)→ β = 1))

For the converse, we get from Lemma 4.21 and the equivalence between
LTC∗ and LRTC∗ (see Proposition 3.6) that it su�ces to express a general
formula with an equality bound narrow Henkin quanti�er in terms of the re-
�exive transitive closure operator. The second-order semantics of an equality
bound narrow Henkin quanti�er is:

∃f∀x̄∀ȳψ (x̄, f (x̄) , ȳ, f (ȳ))

where f in a boolean function.
Let us assume that such a function exists. Let us also assume that,

for certain x̄, ȳ, α, β, ¬ψ (x̄, α, ȳ, 1− β) is true. We then get both that
ψ (x̄, f (x̄) , ȳ, f (ȳ)) is true, and that ψ (x̄, f (x̄) , ȳ, f (ȳ)) is false. Thus, if
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f (x̄) is assigned the value α, then f (ȳ) must be assigned the value β. The
same result is obtained in the case that ¬ψ (ȳ, 1− β, x̄, α) is true.
Let us now de�ne:

φ (x̄�α, ȳ�β) := ¬ψ (x̄, α, ȳ, 1− β) ∨ ¬ψ (ȳ, 1− β, x̄, α)

where � stands for the concatenation function.
When φ (x̄�α, ȳ�β) holds, the value α for f (x̄) �forces� the value β for

f (ȳ). Since this �forcing� is a re�exive transitive relation on tuples of k + 1
elements x̄�α, we see that s̄ forces t̄ whenever

(
RTCk+1

x̄α,ȳβφ
)

(s̄, t̄) holds. In

particular, if for a certain ā ,
(
RTCk+1

x̄α,ȳβφ
)

(ā�γ, ā� (1− γ)) holds, then f (ā)

cannot be assigned the value γ, or we will get a contradiction. Thus, a
necessary condition for such an assignment f to exist is :

¬∃ā∃γ
[(
RTCk+1

x̄α,ȳβφ
)

(ā�γ, ā� (1− γ)) ∧
(
RTCk+1

x̄α,ȳβφ
)

(ā� (1− γ) , ā�γ)
]

(4.1)

This sentence states that f (ā) cannot be assigned both values γ and (1− γ),
which is of course not possible since f is taken to be a boolean function.

We now have to show that this condition is also su�cient. As a conse-
quence of the de�nition of the operator RTC,

(
RTCk+1

x̄�α,ȳ�βφ
)
de�nes a pre-

ordering (a relation ≤) on the tuples x̄�α . Moreover, if the structure satis�es
the necessary condition (4.1) then there cannot be both x̄�α ≤ x̄� (1− α)
and x̄� (1− α) ≤ x̄�α. Now let us apply Lemma 4.22 to the set of tuples

x̄�α pre-ordered according to
(
RTCk+1

x̄�α,ȳ�βφ
)
, with i (x̄�α) = x̄� (1− α). It

is easy to see that i is an order-reversing function since
(
RTCk+1

x̄�α,ȳ�βφ
)
is

invariant when interchanging x̄ and ȳ , and replacing α with (1− β) and β
with (1− α) . The last assumption of the lemma is met due to the necessary
condition (4.1) . Then, we get a set T as guaranteed by the lemma.

Now de�ne:

f(x) =

{
1 x̄�1 ∈ T
0 otherwise

Thus, we always have x̄�f (x) ∈ T and x̄� (1− f (x)) /∈ T .
It remains to show that this assignment f has the desired property that

ψ (x̄, f (x̄) , ȳ, f (ȳ)) holds for all x̄ and ȳ. To see this, suppose that for certain
x̄ and ȳ, ¬ψ (x̄, f (x̄) , ȳ, f (ȳ)) holds. Then φ (x̄�f (x) , ȳ� (1− f (y))) holds,

and since φ implies
(
RTCk+1

x̄α,ȳβφ
)
, we have that x̄�f (x) ≤ ȳ� (1− f (y)). But

x̄�f (x) ∈ T and ȳ� (1− f (y)) /∈ T , and since T is closed upwards, we get a
contradiction.
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Theorem 4.24. LTC ≥ LCard
Proof. Let ψ be a sentence in LσCard and let f be a unary function symbol
not in σ. Now let φ be a �rst-order sentence which asserts that f is 1 − 1
and there is an element not in the range of f . For any structure M for σ,
the domain of M is in�nite i� there is an expansion of M which satis�es φ.
Next let ϕ be a �rst-order sentence which asserts that there is an x such that
everything (including x) is an ancestor of f (x) under f . For any structure
M for σ, the domain of M is �nite i� there is an expansion of M which
satis�es ϕ.

Since LTC quasi includes LCard (see Theorem 4.18), there is a signature
σ ⊆ σ′ and a sentence of Lσ′TC , ψ′, such that for every in�nite structure M ,
M |=LCard

ψ i� there is an expansion of M ,M ′, such that M ′ |=LTC
ψ′. Let

ψ′′ be the sentence obtained by replacing each sub-formula of ψ of the form
Q0xθ with a logical contradiction. If M is in�nite then it satis�es ψ i� there
is an expansion of M that satis�es ψ′, and if M is �nite then M satis�es ψ
i� there is an expansion of M that satis�es ψ′′. Therefore, we get that for
any structureM , M satis�es ψ i� there is an expansion ofM which satis�es
(φ ∧ ψ′) ∨ (ϕ ∧ ψ′′).

Theorem 4.25. LCard ≥ LTC∗

Proof. That LCard includes LTC∗ is done by arguments similar to the ones
used in the last proof. Let ψ be a sentence in LσTC∗ . Since LCard quasi includes
LTC∗ (Theorem 4.18), there is a signature σ ⊆ σ′ and a sentence of Lσ′Card, ψ′,
such that for every in�nite structureM ,M |=LTC∗ ψ i� there is an expansion
of M ,M ′, such that M ′ |=LCard

ψ′. Now, we show that there is a signature
σ ⊆ σ′ and a sentence ψ′′ in L1 (σ′) such that, for each �nite structure M ,
M |=LTC

ψ i� there is an expansion M ′ of M such that M ′ �L1(σ′) ψ
′′. This

can be accomplished by introducing terminology for a linear order, which
allows objects in the domain to play the role of (some) natural numbers.
Then for any formula ϕ (x̄, ȳ) where x̄, ȳ are vectors of length k of distinct
variables, we can formulate a formula ϕ′ (x̄, ȳ, z) which states that � ȳ is an
ancestor of x̄ under ϕ by a chain whose length corresponds to z �. Thus,
let ψ′′ be the sentence obtained by replacing each sub-formula of ψ of the
form (TCx̄,ȳϕ) (s̄, t̄) with ∃z (ϕ′ (s̄, t̄, z)). Therefore, again we get that for
any structureM , M satis�es ψ i� there is an expansion ofM which satis�es
(φ ∧ ψ′) ∨ (ϕ ∧ ψ′′), where φ, ϕ are as in the proof of Theorem 4.24.

From Theorems 4.23, 4.24 and 4.25 we get the following.
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Theorem 4.26. LTC, LTC∗, LCard and LNH are all equivalent.

Remark 4.27. The question whether LWSO is equivalent to the logics men-
tioned in Theorem 4.26 is equivalent to a long-standing open problem in
complexity theory. The crucial proposition is that for every sentence ψ of
LWSO, there is a sentence ψ

′ of LCard such that, for each �nite structure M ,
M �LWSO

ψ i� there is an expansion M ′ of M such that M ′ �LCard
ψ′. When

attention is restricted to �nite structures, LWSO is the same as second-order
logic and each sentence of LCard is equivalent to a �rst-order sentence. Thus
the proposition turns to: For every sentence ψ of the second-order L2 (σ),
there is a set σ′ ⊇ σ and a sentence ψ′ in L1 (σ′) such that for each �-
nite structure M , M �L2(σ) ψ i� there is an expansion M ′ of M such that
M ′ �L1(σ′) ψ

′ . The proposition can be reduced further to the point where
it becomes equivalent to the open problem in complexity theory concern-
ing whether the properties of �nite structures recognized by NP algorithms
include the full polynomial-time hierarchy.

4.4 Conclusion

Let us summarize the main results of this chapter. The most important
conclusion is that by adding to FOL each of the basic concepts investigated in
this chapter (the ancestral, new types of quanti�ers or relation variables, etc.)
we obtain logics which are equivalent in the sense that any class of in�nite
structures de�nable by one of them can be de�ned by any of the others. It
follows that these logics provide a natural intermediate level between FOL
and SOL.

In comparison to FOL, all the logics of this chapter have the advantage
that they are not compact (the natural numbers can be characterized up
to isomorphism in all of them). On the other hand, there is no complete
deductive system which is sound for any of these logics. Unlike the down-
ward Lowenheim-Skolem theorem, the upwards upward Lowenheim-Skolem
theorem fails for these logics.

Though more expressive than FOL, the logics of this chapter do not o�er
all the wealth of SOL. Thus, it follows from Proposition 4.19 that the real
numbers cannot be characterized up to isomorphism in either of the logics
(while they can be characterized in SOL.). The same is true for the notion
of well-ordering.
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5 Formal proof systems for ancestral logic

5.1 Previous proof systems for ancestral logic

Ideally, we would like to have a consistent, sound and complete axiomatic
system for ancestral logic. However, from Corollary 4.6 it follows that there is
no such system. Thus, one should instead look for a useful and e�ective par-
tial axiomatic systems which are still adequate for formalizing mathematical
reasoning. In [3, 4, 5] R.M. Martin and J. Myhill suggested two equivalent
systems for this purpose. Those systems were Hilbert-style systems. Accord-
ingly, we start this chapter by presenting an Hilbert-style system for ancestral
logic, RTCH , which is a variation on those systems for the RTC operator.

De�nition 5.1 (The system RTCH).
The system RTCH is de�ned by adding to the basic Hilbert's system for
�rst-order logic the following three axioms for the RTC operator:

RTCx,yϕ (s, s) (5.1)

ϕ

{
s

x
,
r

y

}
∧ (RTCx,yϕ) (r, t)→ (RTCx,yϕ) (s, t) (5.2)

∀x∀y
(
ψ (x) ∧ ϕ (x, y)→ ψ

{y
x

})
∧ ψ

{ s
x

}
∧ (RTCx,yϕ) (s, t)→ ψ

{
t

x

}
(5.3)

Remark 5.2. It would su�ce to take the above axioms as sentences. For
example instead of 5.2, to take

∀x∀y∀z (ϕ ∧ (RTCx,yϕ) (y, z)→ (RTCx,yϕ) (x, z))

Martin and Myhill both took as primitive the concept of the re�exive tran-
sitive closure operator. An Hilbert-style system TCH for the non-re�exive
transitive closure operator can be given by slightly modifying the axioms of
RTCH . The only di�erence to be made in Axioms 5.2 and 5.3 is replacing
the RTC operator with the TC operator. Axiom 5.1 is to be replaced by the

axiom ϕ
{
s
x
, t
y

}
→ (TCx,yϕ) (s, t).

Hilbert-style systems are not very useful from a proof-theoretic point of
view. Thus we next present an equivalent proof system for ancestral logic of
a more adequate type - Gentzen-style system.
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5.2 Gentzen-style systems

In [8], Gentzen introduced a new concept of formal proof systems which
instead of using formulas as syntactic entities, use a new data-structure called
sequents.

De�nition 5.3. A sequent is an expression of the form Γ ⇒ ∆, Where
Γ,∆ denote �nite (possibly empty) multisets of formulas7. Γ is called the
antecedent of the sequent, and ∆ is called the succedent of the sequent.

The intuitive meaning of a sequent of the form ϕ1, ..., ϕm ⇒ ψ1, ..., ψn is
ϕ1 ∧ ...∧ϕm → ψ1 ∨ ...∨ψn. If the antecedent is empty, the sequent reduces
to the formula ψ1 ∨ ...,∨ψ . If the succedent is empty, the sequents reduces
to ¬ (ϕ1 ∧ ... ∧ ϕm). The empty sequent means a contradiction.

De�nition 5.4. A sequential inference step is an expression of the form

S1 ... Sn
S

Where S1, ..., Sn and S are sequents. S1, ..., Sn are called the upper sequents
or the premises, and S is called the lower sequent or the conclusion of the
inference step.

Intuitively, the meaning of an inference step is that when the upper se-
quents are asserted, we can infer the lower sequent.

De�nition 5.5. A formal proof system comprises of a set of sequents which
are taken as axioms and a set of rules for making inference steps, called
inference rules.

De�nition 5.6. Let G be a Gentzen-style system and S a set of sequents.
A derivation, or a proof-�gure, from S in G is a �nite tree of sequents such
that:

� the topmost sequents of the derivation are axioms of G or elements of
S.

� Each sequent (apart from the axioms) is obtained from previous se-
quents by one of the inference rules of G.

7Gentzen originally took Γ,∆ to be sequences of formulas.
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The lower sequent in a derivation P is called the end-sequent of P . A proof
with end-sequent s is called a proof of s.

De�nition 5.7. Let G be a Gentzen-style system, S a set of sequents and s
a sequent. s is said to be provable from S in a system G, denoted by S `G s,
if there exists a derivation in G of s from S. The sequents of S are called
assumptions. We say that s is a theorem of the system G if it is derivable
from the empty sequent.

It is a standard notation to abbreviate part of a proof by �
...�. Thus, for

example,
.... P
S

denotes a proof P ending with the sequent S.

Gentzen introduced two sequential calculi: LK for classical logic and LJ
for intuitionistic logic. LK was proved to be sound and complete with respect
to classical logic, and LJ with respect to intuitionistic logic. Since our
interest is focused on classical logics with equality we shall present the system
LK=. In the system for each connective or quanti�er there are two types of
inference rules: introduction on the left, which introduce the connective or
quanti�er in the antecedent, and introduction on the right, which does the
same in the succedent.

The letters Γ,∆,Θ represents �nite (possibly empty) multisets of formu-
las, ϕ and ψ arbitrary formulas, x and y variables and s and t terms. For
convenience, we shall denote a sequent of the form Γ⇒ {ϕ} by Γ⇒ ϕ, and
employ other standard abbreviations such as Γ,∆ instead of Γ ∪∆.

De�nition 5.8 (The system LK=).

Axioms:

� Logical axiom:
ϕ⇒ ϕ

� Equality axiom:
⇒ s = s
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Inference rules:

� Structural inference rules:

� Weakening :

Γ⇒ ∆
ϕ,Γ⇒ ∆

(wkL) Γ⇒ ∆
Γ⇒ ∆, ϕ

(wkR)

� Contraction:

ϕ, ϕ,Γ⇒ ∆

ϕ,Γ⇒ ∆
(cntL)

Γ⇒ ∆, ϕ, ϕ

Γ⇒ ∆, ϕ
(cntR)

� Cut:
Γ⇒ ∆, ϕ ϕ,Θ⇒ Λ

Γ,Θ⇒ ∆,Λ
(cut)

� substitution of terms for free variables8:

Γ⇒ ∆

Γ
{
~s
~x

}
⇒ ∆

{
~s
~x

} (sub)

where ~s is free for ~x in all formulas in Γ ∪∆.

� Equality inference rule:

Γ⇒ ∆, s = t Θ⇒ Λ, ϕ
{
s
x

}
Γ,Θ⇒ ∆,Λ, ϕ

{
t
x

} (eq1)
Γ⇒ ∆, s = t Θ⇒ Λ, ϕ

{
t
x

}
Γ,Θ⇒ ∆,Λ, ϕ

{
s
x

} (eq2)

where s, t are free for x in ϕ.

� Operational inference rules:

� Conjunction:

Γ⇒ ∆, ϕ Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ ∧ ψ
(∧R)

ϕ,Γ⇒ ∆

ϕ ∧ ψ,Γ⇒ ∆
(∧L1)

ψ,Γ⇒ ∆

ϕ ∧ ψ,Γ⇒ ∆
(∧L2)

8This rule was not taken as a logical rule in the original LK system in [8].
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� Disjunction:

ϕ,Γ⇒ ∆ ψ,Γ⇒ ∆

ϕ ∨ ψ,Γ⇒ ∆
(∨L)

Γ⇒ ∆, ϕ

Γ⇒ ∆, ϕ ∨ ψ
(∨R1)

Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ ∨ ψ
(∨R2)

� Implication:

Γ⇒ ∆, ϕ ψ,Γ⇒ ∆

ϕ→ ψ,Γ⇒ ∆
(→ L)

ϕ,Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ→ ψ
(→ R)

� Negation:
Γ⇒ ∆, ϕ

¬ϕ,Γ⇒ ∆
(¬L)

ϕ,Γ⇒ ∆

Γ⇒ ∆,¬ϕ
(¬R)

� Universal quanti�er:

ϕ
{
t
x

}
,Γ⇒ ∆

∀xϕ,Γ⇒ ∆
(∀L)

Γ⇒ ∆, ϕ
{
y
x

}
Γ⇒ ∆,∀xϕ

(∀R)

where y and t are free for substitution instead of x in ϕ, and y
does not occur free in Γ ∪∆ ∪ {∀xϕ}.

� Existential quanti�er:

ϕ
{
y
x

}
,Γ⇒ ∆

∃xϕ,Γ⇒ ∆
(∃L)

Γ⇒ ∆, ϕ
{
t
x

}
Γ⇒ ∆,∃xϕ

(∃R)

Where y and t are free for substitution instead of x in ϕ, and y
does not occur free in Γ ∪∆ ∪ {∃xϕ}.

Remark 5.9. In the rest of this chapter we will use several times the following
derivable rule of LK=:

Γ⇒ ∆, ϕ
{
s
x

}
Γ, s = t⇒ ∆, ϕ

{
t
x

} (eq3)

Remark 5.10. In the proofs in the rest of this chapter we will not distinguish
between the sequents:

ϕ ∧ ψ,Γ⇒ ∆

ϕ, ψ,Γ⇒ ∆

since each of them is provable prom the other. Notice that deriving the
second sequent from the �rst one involves the cut rule.
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The same goes for the sequents:

Γ⇒ ∆, ϕ ∨ ψ,
Γ⇒ ∆, ϕ, ψ

Gentzen proved a version of the cut-elimination theorem for LK=, which
states that whenever there exists a proof (from no assumptions) of some
sequent in LK=, there exists a proof of the same sequent without any essential
cuts, i.e. cuts can only occur on formulas of the form s = t. This is a crucial
property in any reasonable Gentzen-style system since it usually has many
important corollaries, for example the sub-formula property. The original
proof of the cut-elimination theorem was done by case analysis on derivation
ending with an application of the cut rule. In the present chapter, LK= is
extended to a system for ancestral logic and similar methods are used in
order to investigate the system's proof-theoretic properties.

5.3 Gentzen-style system for ancestral logic

In this section two Gentzen-style systems for ancestral logic are presented,
one for the re�exive transitive closure operator and one for the non-re�exive
one. The properties of the systems and the di�erence between them are inves-
tigated.The �rst system, for the TC operator, is based on the one suggested
in [1].

De�nition 5.11 (The system TCG).
The system TCG is de�ned by adding to the basic Gentzen's system for
�rst-order logic LK= the following inference rules for the TC operator:

Γ⇒ ∆, ϕ
{
s
x
, t
y

}
Γ⇒ ∆, (TCx,yϕ) (s, t) (5.4)

Γ⇒ ∆, (TCx,yϕ) (s, r) Γ⇒ ∆, (TCx,yϕ) (r, t)

Γ⇒ ∆, (TCx,yϕ) (s, t) (5.5)

Γ, ψ (x) , ϕ (x, y)⇒ ∆, ψ
{
y
x

}
Γ, ψ

{
s
x

}
, (TCx,yϕ) (s, t)⇒ ∆, ψ

{
t
x

}
(5.6)
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In all three rules we assume that the terms which are substituted are free
for substitution and that no forbidden capturing occurs. Rules 5.4 and 5.5
are introduction rules on the right. Rule 5.6 is an introduction rule on the
left. The restrictions in applying this rule are that x should not occur free in
Γ and ∆, and y should not occur free in Γ,∆ and ψ. This rule is a generalized
induction principle which says that if t is a ϕ-descendant of s, then if s has
some property which is passed down from one object to another if they are
ϕ-related, then t also has that property.

Next is a de�nition of a Gentzen-style system for PA.

De�nition 5.12 (The system PAG).
The system PAG is obtained from LK= by adding the following:

s (x) = 0⇒
s (x) = s (y)⇒ x = y

are axioms in PAG. If ϕ is one of the axioms 2.3, 2.4, 2.5 or 2.6 of PA, then
⇒ ϕ̂ is an axiom in PAG

9. The following inference rule is also added:

Γ, ψ ⇒ ∆, ψ
{
S(x)
x

}
Γ, ψ

{
0
x

}
⇒ ∆, ψ

{
t
x

}
(5.7)

Note. Gentzen Proved that PAG is equivalent to PA.

In TCG augmented by Axiom 3.1 (see Theorem 3.13), the induction prin-
ciple 5.6 entails all instances of the ordinary �rst-order induction schema. To
see this assume that σ ⊇ {0, S}, and take ϕ to be S (x) = y and s to be 0.
We then obtain:

Γ, ψ (x) , S (x) = y ⇒ ∆, ψ
{
y
x

}
Γ, ψ

{
0
x

}
, (TCx,y (S (x) = y)) (0, t)⇒ ∆, ψ

{
t
x

}
(5.8)

9ϕ̂ denotes the matrix of ϕ (see 2.3).
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By using the �rst-order rules for = and the cut rule, and by abbreviating
(TCx,y (S (x) = y)) (0, t) by 0 < t, we get:

Γ, ψ (x)⇒ ∆, ψ
{
S(x)
x

}
Γ, ψ

{
0
x

}
, 0 < t⇒ ∆, ψ

{
t
x

}
(5.9)

Since the sequent Γ, ψ
{

0
x

}
, 0 = t ⇒ ∆, ψ

{
t
x

}
is obviously valid in TCG we

have:
Γ, ψ (x)⇒ ∆, ψ

{
S(x)
x

}
Γ, ψ

{
0
x

}
, 0 = t ∨ 0 < t⇒ ∆, ψ

{
t
x

}
(5.10)

It follows that in any system in which⇒ 0 = t∨0 < t (which is a direct con-
sequence of 3.1) is provable we can derive the induction rule in PAG, Rule 5.7.

An important observation should be made regarding the choice of rules
in TCG. Instead of Rule 5.5 we could have chosen each of the following rules:

Γ⇒ ∆, (TCx,yϕ) (s, r) Γ⇒ ∆, ϕ
{
r
x
, t
y

}
Γ⇒ ∆, (TCx,yϕ) (s, t) (5.11)

Γ⇒ ∆, ϕ
{
s
x
, r
y

}
Γ⇒ ∆, (TCx,yϕ) (r, t)

Γ⇒ ∆, (TCx,yϕ) (s, t) (5.12)

Obviously 5.11 and 5.12 are derivable in TCG. For example, here is a proof
of 5.12 in TCG. (The proof of 5.11 is analogous.)

Γ⇒ ∆, ϕ
{
s
x
, r
y

}
Γ⇒ ∆, (TCx,yϕ) (s, r)

(5.4)
Γ⇒ ∆, (TCx,yϕ) (r, t)

Γ⇒ ∆, (TCx,yϕ) (s, t)
(5.5)

The converse is also true; i.e. Rule 5.5 is derivable from Rules 5.14, 5.6 and
either 5.11 or 5.12. To show this, here is a proof of 5.5 in TC ′G which is the
system obtained from TCG by replacing Rule 5.5 with 5.11. For convenience,
we omit the context Γ,∆ from the sequents in the following proof.

41



⇒ (TCx,yϕ) (r, t)

⇒ (TCx,yϕ) (s, r)

(TCx,yϕ) (s, x)⇒ (TCx,yϕ) (s, x) ϕ (x, y)⇒ ϕ (x, y)

(TCx,yϕ) (s, x) , ϕ (x, y)⇒ (TCx,yϕ) (s, y)
(5.11)

(TCx,yϕ) (s, r) , (TCx,yϕ) (r, t)⇒ (TCx,yϕ) (s, t)
(5.6)

(TCx,yϕ) (r, t)⇒ (TCx,yϕ) (s, t)

⇒ (TCx,yϕ) (s, t)

Note that in the application of Rule 5.6 we take (TCx,yϕ) (s, x) to be ψ.
Thus, we �nd that TCG and TC ′G are equivalent in the presence of the

cut rule. So the reader might wonder why the more complicated version has
been chosen. The answer to this lies within the proofs above. If we look at
the above proofs we see that deriving 5.11 and 5.12 in TCG does not involve
the cut rule, whereas the above derivation of 5.5 in TC ′G does, and in the next
section we show that the use of these cuts is actually unavoidable. Therefore,
the rules will not be equivalent in any cut-free fragment. Choosing rule 5.5
increases the chance of achieving cut-elimination, a topic we will explore in
section 5.5.

Since all the previous systems suggested for ancestral logic we know of
(see [3, 4, 5]) worked with the re�exive form of the transitive closure operator,
we also present a Gentzen-style system for it which is based on the the system
RTCH .

De�nition 5.13 (The system RTCG).
The system RTCG is de�ned by adding to the basic Gentzen's system for
�rst-order logic LK= the axiom:

Γ⇒ ∆, (RTCx,yϕ) (s, s) (5.13)

and the following inference rules:

Γ⇒ ∆, ϕ
{
s
x
, t
y

}
Γ⇒ ∆, (RTCx,yϕ) (s, t) (5.14)

Γ⇒ ∆, (RTCx,yϕ) (s, r) Γ⇒ ∆, (RTCx,yϕ) (r, t)

Γ⇒ ∆, (RTCx,yϕ) (s, t) (5.15)

Γ, ψ (x) , ϕ (x, y)⇒ ∆, ψ
{
y
x

}
Γ, ψ

{
s
x

}
, (RTCx,yϕ) (s, t)⇒ ∆, ψ

{
t
x

}
(5.16)
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The same restrictions on the rules in TCG apply here.
By almost the same arguments, the same connection between the induc-

tion rule of PAG and 5.16 can be established in RTCG. Also, as in TCG
there are 2 variations of rule 5.17 which are equivalent:

Γ⇒ ∆, (RTCx,yϕ) (s, r) Γ⇒ ∆, ϕ
{
r
x
, t
y

}
Γ⇒ ∆, (RTCx,yϕ) (s, t) (5.17)

Γ⇒ ∆, ϕ
{
s
x
, r
y

}
Γ⇒ ∆, (RTCx,yϕ) (r, t)

Γ⇒ ∆, (RTCx,yϕ) (s, t) (5.18)

Note that we could have replaced Rules 5.14 and 5.15 by one of the Rules
5.17 or 5.18. In this case Rules 5.14 and 5.15 will be derivable, but only by
using cuts.

Since the two forms of the transitive closure operator can be expressed
in terms of one another (see proposition 3.6), it is interesting to explore the
connection between the two systems. Let ϕ be a sentence in LTC . ϕ∗ is a
sentence in LRTC de�ned by induction as follows: for each sentence ϕ in �rst-
order language de�ne ϕ∗ := ϕ, and de�ne ((TCx,yA) (s, t))∗ to be the formula:

∃z
(
A∗
{
s
x
, z
y

}
∧ (RTCx,yA

∗) (z, t)
)
. Let ψ be a sentence in LRTC . Then ψ′

is a sentence in LTC de�ned by induction as follows: for each sentence ψ in
�rst-order language de�ne ψ′ := ψ, and de�ne ((RTCx,yA) (s, t))′ to be the
formula: (TCx,yA

′) (s, t) ∨ s = t.

Lemma 5.14. The following holds:

�

(
ϕ
{
s
x
, t
y

})∗
= ϕ∗

{
s
x
, t
y

}
and

(
ϕ
{
s
x
, t
y

})′
= ϕ′

{
s
x
, t
y

}
.

� (¬ϕ)∗ = ¬ϕ∗ and (¬ϕ)′ = ¬ϕ′.

� (ϕ ◦ ψ)∗ = ϕ∗ ◦ ψ∗ and (ϕ ◦ ψ)′ = ϕ′ ◦ ψ′, where ◦ ∈ {∧,∨,→}.

� (Qxϕ)∗ = Qxϕ∗ and (Qxϕ)′ = Qxϕ′, where Q ∈ {∀, ∃}.

Theorem 5.15. Corresponding to any proof of Γ ⇒ ∆ in TCG there is a
parallel proof in RTCG of Γ∗ ⇒ ∆∗, and corresponding to any proof of Γ⇒ ∆
in RTCG there is a parallel proof in TCG of Γ

′ ⇒ ∆
′
.
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Proof. We start by showing that for any proof of Γ ⇒ ∆ in TCG there is a
parallel proof in RTCG of Γ∗ ⇒ ∆∗. The proof is carried out by induction,
we state here only the cases concerning the TC operator . In the following
derivations we use Lemma 5.14, and again omit the context from the sequents
in the derivations.

Case 1. Rule 5.4: An application of rule 5.4 can be transformed into the fol-
lowing derivation:

⇒ ϕ∗
{
s
x
, t
y

}
⇒ (RTCx,yϕ

∗) (t, t)

⇒ ϕ∗
{
s
x
, t
y

}
∧ (RTCx,yϕ

∗) (t, t)

⇒ ∃z
(
ϕ∗
{
s
x
, z
y

}
∧ (RTCx,yϕ

∗) (z, t)
)

Case 2. Rule 5.5: We may use Rule 5.12, since the two rules are proven to
be equivalent in TCG. There is a proof in RTCG of

ϕ∗
{
r

x
,
z

y

}
∧ (RTCx,yϕ

∗) (z, t)⇒ (RTCx,yϕ
∗) (r, t)

(using 5.18). Thus, there is a proof in RTCG of

∃z
(
ϕ∗
{
r

x
,
z

y

}
∧ (RTCx,yϕ

∗) (z, t)

)
⇒ (RTCx,yϕ

∗) (r, t)

Therefore, by the I.H., we get that from⇒ ∃z
(
ϕ∗
{
r
x
, z
y

}
∧ (RTCx,yϕ

∗) (z, t)
)

and
⇒ ϕ∗

{
s
x
, r
y

}
we can prove ⇒ ∃z

(
ϕ∗
{
s
x
, z
y

}
∧ (RTCx,yϕ

∗) (z, t)
)
.

Case 3. Rule 5.6: An application of rule 5.6 can be transformed into the fol-
lowing derivation:

ψ∗ (x) , ϕ∗ (x, y)⇒ ψ∗
{
y
x

}
ψ∗
{
s
x

}
, ϕ∗

{
s
x
, z
y

}
⇒ ψ∗

{
z
x

} (sub) ψ∗ (x) , ϕ∗ (x, y)⇒ ψ∗
{
y
x

}
ψ∗
{
z
x

}
, (RTCx,yϕ

∗) (z, t)⇒ ψ∗
{
t
x

} (5.16)

ψ∗
{
s
x

}
, ϕ∗

{
s
x
, z
y

}
∧ (RTCx,yϕ

∗) (z, t)⇒ ψ∗
{
t
x

} (cut+ ∧L)

ψ∗
{
s
x

}
, ∃z

(
ϕ∗
{
s
x
, z
y

}
∧ (RTCx,yϕ

∗) (z, t)
)
⇒ ψ∗

{
t
x

}
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Next we show that for any proof of Γ⇒ ∆ in RTCG there is a parallel proof
in TCG of Γ

′ ⇒ ∆
′
. This too is done by induction, and we only present here

the cases concerning the RTC operator. In the following derivations we use
Lemma 5.14.

Case 1. Axiom 5.13: The immediate translation of this axiom is
Γ′ ⇒ ∆′, (TCx,yϕ

′) (s, s) ∨ s = s, which is easily derivable from an axiom of
LK=.

Case 2. Rule 5.14: An application of rule 5.14 can be transformed into the
following derivation (using Remark 5.10):

⇒ ϕ′
{
s
x
, t
y

}
⇒ (TCx,yϕ

′) (s, t) , s = t
(5.4 + wkR)

Case 3. Rule 5.15: An application of rule 5.15 can be transformed into the
following derivation (using Remark 5.10):

⇒ (TCx,yϕ
′) (s, r) , s = r, ⇒ (TCx,yϕ

′) (r, t) , r = t

⇒ (TCx,yϕ
′) (s, t) , s = t

(5.5 + eq)

Case 4. Rule 5.16: An application of rule 5.16 can be transformed into the
following derivation:

ψ′ (x) , ϕ′ (x, y)⇒ ψ′
{
y
x

}
ψ′
{
s
x

}
, (TCx,yϕ

′) (s, t)⇒ ψ′
{
t
x

} (5.6)
ψ′
{
s
x

}
, s = t⇒ ψ′

{
t
x

}
ψ′
{
s
x

}
, (TCx,yϕ

′) (s, t) ∨ s = t⇒ ψ′
{
t
x

}

The last theorem entails that any theorem of TCG can be translated to
a theorem in RTCG and vice versa. However, the more interesting result
is that all fundamental rules concerning RTC that have been suggested (as
far as we know) are derivable in RTCG, while in TCG this is not the case.
i.e. there are fundamental rules regarding the TC operator which are not
derivable in TCG.
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Proposition 5.16. The following rules are derivable in RTCG:
10

Γ⇒ ∆, (RTCx,yϕ) (s, t)

Γ⇒ ∆, s = t, ∃z
(

(RTCx,yϕ) (s, z) ∧ ϕ
{
z
x
, t
y

})
Γ⇒ ∆, (RTCx,yϕ) (s, t)

Γ⇒ ∆, s = t, ∃z
(
ϕ
{
s
x
, z
y

}
∧ (RTCx,yϕ) (z, t)

) (5.19)

Γ⇒ ∆, (RTCx,yϕ) (s, t)

Γ⇒ ∆, (RTCy,xϕ) (t, s)

(RTCx,yϕ) (s, t) ,Γ⇒ ∆

(RTCy,xϕ) (t, s) ,Γ⇒ ∆
(5.20)

Γ⇒ ∆, (RTCx,yϕ) (s, t)

Γ⇒ ∆,
(
RTCu,vϕ

{
u
x ,

v
y

})
(s, t)

(RTCx,yϕ) (s, t) ,Γ⇒ ∆(
RTCu,vϕ

{
u
x ,

v
y

})
(s, t) ,Γ⇒ ∆

(5.21)

Γ, ϕ⇒ ∆, ψ

Γ, (RTCx,yϕ) (s, t)⇒ ∆, (RTCx,yψ) (s, t)
(5.22)

(RTCx,yϕ) (s, t) ,Γ⇒ ∆

(RTCu,v (RTCx,yϕ) (u, v)) (s, t) ,Γ⇒ ∆
(5.23)

ϕ
{
s
x

}
,Γ⇒ ∆

(RTCx,yϕ) (s, t) ,Γ⇒ s = t,∆

ϕ
{
t
y

}
,Γ⇒ ∆

(RTCx,yϕ) (s, t) ,Γ⇒ s = t,∆
(5.24)

Conditions:

� In all the rules we assume that the terms which are substituted are free
for substitution and that no forbidden capturing occurs.

� In 5.19 z should not occur free in Γ,∆ and ϕ
{
s
x
, t
y

}
.

� In 5.21 the conditions are the usual ones concerning the α-rule.

� In 5.22 x, y should not occur free in Γ,∆.

� In 5.23 u, v should not occur free in ϕ.

� In 5.24 y should not occur free in Γ,∆ or s in the left rule, and x should
not occur free in Γ,∆ or t in the right rule.

10These rules were suggested in [1, 3, 4, 5].
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Proof. In all the derivations in this proof we use freely Remark 5.10, and
again omit the context Γ,∆ from the sequents in the derivations.

� The �rst rule in 5.19: Consider the following proofs:
P1 :

⇒ (RTCx,yϕ) (y, y)

s = y ⇒ (RTCx,yϕ) (s, y)
(eq3)

ϕ
{
y
x
, z
y

}
⇒ ϕ

{
y
x
, z
y

}
s = y, ϕ

{
y
x
, z
y

}
⇒ (RTCx,yϕ) (s, y) ∧ ϕ

{
y
x
, z
y

}
s = y, ϕ

{
y
x
, z
y

}
⇒ ∃w

(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x
, z
y

})
The sequent (RTCx,yϕ) (s, w) , ϕ

{
w
x
, y
y

}
⇒ (RTCx,yϕ) (s, y) is prov-

able in RTCG. Thus, we can construct the following P2 :

....

(RTCx,yϕ) (s, w) ∧ ϕ
{
w
x
, y
y

}
⇒ (RTCx,yϕ) (s, y)

∃w
(

(RTCx,yϕ) (s, w) ∧ ϕ
{
w
x
, y
y

})
⇒ (RTCx,yϕ) (s, y) ϕ

{
y
x
, z
y

}
⇒ ϕ

{
y
x
, z
y

}
∃w
(

(RTCx,yϕ) (s, w) ∧ ϕ
{
w
x
, y
y

})
, ϕ
{
y
x
, z
y

}
⇒ (RTCx,yϕ) (s, y) ∧ ϕ

{
y
x
, z
y

}
∃w
(

(RTCx,yϕ) (s, w) ∧ ϕ
{
w
x
, y
y

})
, ϕ
{
y
x
, z
y

}
⇒ ∃w

(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x
, z
y

})
From P1 and P2 we can obtain:

.

.

.

.
P1

.

.

.

.
P2

∃w
(

(RTCx,yϕ) (s, w) ∧ ϕ
{

w
x
, y
y

})
∨ s = y, ϕ

{
y
x
, z
y

}
⇒ ∃w

(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x
, z
y

})
∨ s = z

∃w
(

(RTCx,yϕ) (s, w) ∧ ϕ
{

w
x
, s
y

})
∨ s = s, (RTCx,yϕ) (s, t)⇒ ∃w

(
(RTCx,yϕ) (s, w) ∧ ϕ

{
w
x
, t
y

})
∨ s = t

(5.16)

(RTCx,yϕ) (s, t)⇒ ∃w
(

(RTCx,yϕ) (s, w) ∧ ϕ
{

w
x
, t
y

})
∨ s = t

(eq + cut)

The proof for the second rule in 5.19 is symmetric.

� The left rule in 5.20: Consider the following proof P1, where P
′ is ob-

tained using Rule 5.19:
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.... P
′

(RTCx,yϕ) (s, t)⇒ s = t,∃z
(
ϕ
{

s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

) ⇒ (RTCy,xϕ) (s, s)

s = t⇒ (RTCy,xϕ) (t, s)

(RTCx,yϕ) (s, t)⇒ (RTCy,xϕ) (t, s) ,∃z
(
ϕ
{

s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

)
The sequent ϕ (x, y) , (RTCy,xϕ) (x, s) ⇒ (RTCy,xϕ) (y, s) is provable
in RTCG using 5.18. Thus, we can construct the following P2 :

ϕ
{

z
y
, s
x

}
⇒ ϕ

{
z
y
, s
x

}
⇒ (RTCy,xϕ) (s, s)

ϕ
{

z
y
, s
x

}
⇒ (RTCy,xϕ) (z, s)

(5.18) ϕ (x, y) , (RTCy,xϕ) (x, s)⇒ (RTCy,xϕ) (y, s)

(RTCx,yϕ) (z, t) , (RTCy,xϕ) (z, s)⇒ (RTCy,xϕ) (t, s)
(5.16)

ϕ
{

s
x
, z
y

}
∧ (RTCx,yϕ) (z, t)⇒ (RTCy,xϕ) (t, s)

∃z
(
ϕ
{

s
x
, z
y

}
∧ (RTCx,yϕ) (z, t)

)
⇒ (RTCy,xϕ) (t, s)

Using a cut, from P1 and P2 we obtain:

`RTCG
(RTCx,yϕ) (s, t)⇒ (RTCy,xϕ) (t, s)

The proof of the right rule is symmetric.

� The left rule in 5.21: We have that

`RTCG
s = t⇒

(
RTCu,vϕ

{
u

x
,
v

y

})
(s, t)

By a similar method to the one used in the proof of 5.20 we get:

`RTCG
∃z
(

(RTCx,yϕ) (s, z) ∧ ϕ
{
z

x
,
t

y

})
⇒
(
RTCu,vϕ

{
u

x
,
v

y

})
(s, t)

Thus using cuts and Rule 5.19 we obtain:

`RTCG
(RTCx,yϕ) (s, t)⇒

(
RTCu,vϕ

{
u

x
,
v

y

})
(s, t)

The proof of the right rule is symmetric.

� Rule 5.22: Consider the following proof P1, where P
′ is obtained using

Rule 5.19:

.... P
′

(RTCx,yϕ) (s, t)⇒ s = t,∃z
(
ϕ
{

s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

) ⇒ RTCx,yψ (s, s)

s = t⇒ RTCx,yψ (s, t)

(RTCx,yϕ) (s, t)⇒ (RTCx,yψ) (s, t) ,∃z
(
ϕ
{

s
x ,

z
y

}
∧ (RTCx,yϕ) (z, t)

) (cut)
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Then, observe the following proof P2:

ϕ⇒ ψ

ϕ
{

s
x
, z
y

}
⇒ ψ

{
s
x
, z
y

} (sub)
⇒ (RTCx,yψ) (z, z)

ϕ
{

s
x
, z
y

}
⇒ (RTCx,yψ) (s, z)

(5.18)

(RTCx,yψ) (s, z)⇒ (RTCx,yψ) (s, z)

ϕ⇒ ψ

ϕ
{

z
x
, u
y

}
⇒ ψ

{
z
x
, u
y

}
(RTCx,yψ) (s, z) , ϕ

{
z
x
, u
y

}
⇒ (RTCx,yψ) (s, u)

(5.17)

(RTCx,yψ) (s, z) , (RTCx,yϕ) (z, t)⇒ (RTCx,yψ) (s, t)
(5.16)

ϕ
{

s
x
, z
y

}
∧ (RTCx,yϕ) (z, t)⇒ (RTCx,yψ) (s, t)

(cut)

∃z
(
ϕ
{

s
x
, z
y

}
∧ (RTCx,yϕ) (z, t)

)
⇒ (RTCx,yψ) (s, t)

From P1 and P2 we can obtain: `RTCG
(RTCx,yϕ) (s, t)⇒ (RTCx,yψ) (s, t).11

� Rule 5.23: Note that

`RTCG
(RTCx,yϕ) (s, u) , (RTCx,yϕ) (u, v)⇒ (RTCx,yϕ) (s, v)

Then, by applying Rule 5.16 we obtain:

`RTCG
(RTCx,yϕ) (s, s) , (RTCu,v (RTCx,yϕ) (u, v)) (s, t)⇒ (RTCx,yϕ) (s, t)

Since ⇒ (RTCx,yϕ) (s, s) is an axiom, using a cut we can obtain

`RTCG
(RTCu,v (RTCx,yϕ) (u, v)) (s, t)⇒ (RTCx,yϕ) (s, t)

� The left rule in 5.24: Note that by the second rule in 5.19 we can obtain

`RTCG
(RTCx,yϕ) (s, t)⇒ s = t,∃z

(
ϕ
{
s
x
, z
y

}
∧ (RTCx,yϕ) (z, t)

)
. From

the sequent ϕ
{
s
x

}
⇒ we can derive by standard rules of LK= the se-

quent: ∃z
(
ϕ
{
s
x
, z
y

}
∧ (RTCx,yϕ) (z, t)

)
⇒, where z is a fresh variable.

Thus, by using the cut rule we can obtain: `RTCG
(RTCx,yϕ) (s, t) ⇒

s = t. The proof of the right rule in 5.24 is similar, only this time we
use the �rst rule in 5.19.

The last theorem provides a partial evidence for the claim that RTCG is the
appropriate system for ancestral logic, since it can derive all fundamental
rules concerning the RTC operator that have been suggested in the literature.
Unfortunately, this is not the case in TCG. There are fundamental properties
of the TC operator which cannot be derived in TCG.

11Note that the cut in P1 is inessential, while the one in P2 is essential.
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Theorem 5.17. The following valid rules are not derivable in TCG:

ϕ
{
s
x

}
,Γ⇒ ∆

(TCx,yϕ) (s, t) ,Γ⇒ ∆

ϕ
{
t
y

}
,Γ⇒ ∆

(TCx,yϕ) (s, t) ,Γ⇒ ∆
(5.25)

Γ⇒ ∆, (TCx,yϕ) (s, t)

Γ⇒ ∆, ϕ
{
s
x
, t
y

}
,∃z

(
(TCx,yϕ) (s, z) ∧ ϕ

{
z
x
, t
y

})
Γ⇒ ∆, (TCx,yϕ) (s, t)

Γ⇒ ∆, ϕ
{
s
x
, t
y

}
,∃z

(
ϕ
{
s
x
, z
y

}
∧ (TCx,yϕ) (z, t)

) (5.26)

where in 5.25 y should not occur free in Γ,∆ or s in the left rule, and x
should not occur free in Γ,∆ or t in the right rule; and in 5.26 z should not

occur free in Γ,∆ and ϕ
{
s
x
, t
y

}
.

Proof. It is easy to see that all the rules of TCG remain valid and derivable
in RTCG if we replace the operator TC with RTC. Assume that the above
rules are derivable in TCG. Hence, we would get that in RTCG the following
are provable:

ϕ
{
s
x

}
,Γ⇒ ∆

(RTCx,yϕ) (s, t) ,Γ⇒ ∆

ϕ
{
t
y

}
,Γ⇒ ∆

(RTCx,yϕ) (s, t) ,Γ⇒ ∆

Γ⇒ ∆, (RTCx,yϕ) (s, t)

Γ⇒ ∆, ϕ
{
s
x
, t
y

}
,∃z

(
(RTCx,yϕ) (s, z) ∧ ϕ

{
z
x
, t
y

})
Γ⇒ ∆, (RTCx,yϕ) (s, t)

Γ⇒ ∆, ϕ
{
s
x
, t
y

}
,∃z

(
ϕ
{
s
x
, z
y

}
∧ (RTCx,yϕ) (z, t)

)
Which are obviously not valid rules of RTCG, since (RTCx,yϕ) (s, s) holds
for all s and ϕ.

In general, any rule which is valid only for the TC operator and not to
the RTC operator will not be derivable in TCG. So, the question that arises
from the last theorem is what do we need to add to the system TCG in order
to make it able to derive all the basic theorems rules the TC operator.
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Proposition 5.18. If we add to TCG the axiom:

(TCx,yϕ) (s, t)⇒ ϕ

{
s

x
,
t

y

}
,∃z ((TCx,yϕ) (s, z) ∧ ϕ (z, t)) (5.27)

or its equivalent:

(TCx,yϕ) (s, t)⇒ ϕ

{
s

x
,
t

y

}
,∃w (ϕ (s, z) ∧ (TCx,yϕ) (z, t)) (5.28)

where z does not occur free in Γ,∆ and ϕ
{
s
x
, t
y

}
, we get a system strong

enough to derive all the TC-counterparts of the rules in Proposition 5.16.

The proof of the last theorem is given by derivations similar to those in
Proposition 5.16. In each of the proofs we replace the use of one of the rules
in 5.19 by the corresponding axiom for the TC operator (Axiom 5.27 or 5.28).

Axioms 5.27 and 5.28 are obviously too complicated to be taken as axioms
if we want the system to remain e�ective. Further research is required in order
to �nd what other �simple� rules or axioms can be added to TCG in order to
make these axioms derivable.

5.4 The connection to PA

From the last discussion we get that from the two systems for ancestral
logic, the system RTCG is the better candidate to be used as a proof system
for ancestral logic. One support for this claim comes from the following
connection with PAG.

De�nition 5.19. The system RTCA is obtained from RTCG by adding the
following axioms:

s (x) = 0⇒
s (x) = s (y)⇒ x = y

⇒ x+ 0 = x

⇒ x+ s (y) = s (x+ y)

⇒ (RTCw,u (s(w) = u)) (0, x)
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Note. Using the de�nition for multiplication given in Theorem 3.14(1), re-

placing in it formulas of the form (TCx,yA) (s, t) by ∃z
(
A
{
s
x ,

z
y

}
∧ (RTCx,yA) (z, t)

)
,

we get that the axioms for multiplication (2.5 and 2.6) are derivable in RTCA.
The proof is straightforward and long so we omit it.

Theorem 5.20. The system RTCA is equivalent to PAG.

Proof. Due to the former discussion on the connection between the induction
rules of the systems, we get that RTCA is an extension of PAG. Thus,
RTCA can prove any theorem of the original PAG. For the converse, de�ne
a translation of each sentence ϕ in the language of RTC for arithmetics, to
a sentence ϕ∗ in the language of PA. Then we prove that if `RTCA

Γ ⇒ ∆,
then `PAG

Γ∗ ⇒ ∆∗. For the translation we use a beta function which allows
us to encode in PA �nite sequences (this idea is taken from [2]). Recall that
we can express facts about sequences of numbers in PA by using a β-function
such that for any �nite sequence k0, k1, ..., kn there is some c such that for
all i ≤ n, β(c, i) = ki.Thus, our motivation is that is s, t are closed terms,
(TCx,yϕ) (s, t) holds i� for some n, there is a sequence k0, k1, ..., kn such that
k0 = I [s], kn = I [t], and each pair of consecutive terms are in the relation
de�ned by ϕ. Using a two place β-function, (RTCx,yϕ) (s, t) is true in N i�
there are n, c such that the following hold:

� β(c, 0) = I [s]

� β(c, n) = I [t]

� ∀i < n ϕ
{
β(c,i)
x
, β(c,s(i))

y

}
∨ (β(c, i) = β(c, s(i))) is true in N .

Accordingly, let B be a w� of LPA with three free variables which captures
in PA a β-function12. For each sentence ϕ in �rst-order language de�ne
ϕ∗ := ϕ. De�ne ((RTCx,yϕ) (s, t))∗ to be the following formula:

∃z∃c
(
B (c, 0, s) ∧B (c, z, t) ∧ ∀u<z∃v∃w

(
B (c, u, v) ∧B (c, s (u) , w) ∧

(
ϕ ∗

{
v

x
,
w

y

}
∨ v = w

)))
It is easy to check that all the inference rules for the RTC-operator apply
equally to starred wwf in PAG, and the starred analogue of the axiom:

⇒ (RTCw,u (s(w) = u)) (0, x)

12A theory T captures a two-place function f by a w� ψ(x, y, z) i�, for any closed
terms a, b, c: if f (I [a] , I [b]) = I [c], then T ` ψ(a, b, c); and if f (I [a] , I [b]) 6= I [c], then
T ` ¬ψ(a, b, c).
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is also a theorem of PAG. So corresponding to any proof of Γ⇒ ∆ in RTCA
there is a parallel proof in plain PAG of Γ∗ ⇒ ∆∗.

Experience shows that PAG is a very natural and robust system for arith-
metic. Despite e�orts to �nd other examples, all arithmetical statements
which are known not to be provable in PAG are connected with Godel's in-
completeness theorem. This provides an important evidence for the claim
that RTCA is a natural system for dealing with the formalization of mathe-
matics.

Let us conclude. If we add to the basic �rst-order system for arithmetic
the ancestral operator (in its re�exive form) we basically form a logical system
which incorporate new ideas that do not go beyond those needed for us in
order to understand elementary arithmetic and logic. Thus, we may claim
that if one comes up with proofs of theorems which are unsettled by RTCG,
such proofs will have to go beyond the understanding of the ancestral. This
entails a thesis which is our version of Isaacson's thesis13 [17]:

Thesis. If there is a proof of any true sentence of LRTC which is independent
of RTCA, then we need for it ideas that go beyond those needed in order
to understand LRTC.

5.5 On cut elimination and constructive consistency proofs

Next we examine some fundamental proof-theoretic properties of TCG and
RTCG, the most important of which is cut elimination. The cut elimination
theorem states that the cut rule is admissible. Since our systems for ancestral
logic include equality, we use an alternative version of the cut elimination
theorem. A cut is said to be inessential if the cut formula is of the form
s = t, otherwise it is called essential cut. A system with equality is said
to admit cut-elimination if all essential cuts are admissible. In this section
we shall give an overview of possible methods for syntactically proving that
TCG admits cut-elimination. In the discussion in this section about the cut
elimination theorem we will refer to TCG, though the same considerations
show that all of the results apply to RTCG as well.

13Since by Theorem 5.20 we know that RTCA is equivalent to PAG, Isaacson's thesis
and this thesis are equivalent.
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In the semantical proofs of cut elimination one usually establishes not
only closure under cut, but also completeness. However, this type of proof
does not provide a constructive method for eliminating cuts from a given
proof. Syntactically eliminating essential cuts from a proof is not simply
a matter of showing that the cut rule remains admissible if it is deleted
from the list of the rules of the system. One should provide an algorithm
for transforming any proof containing essential cuts to an essential-cut-free
proof. The syntactic cut elimination proofs (see [10, 13, 8, 9]) use a method
of going over a given proof and �reducing� it to a less complicated proof in
some sense, until all essential cuts are eliminated. What is reduced can be
the complexity of the cut formula, the �depth� of the proof, the ordinal of the
proof or some other measure for the complexity of the proof. For example,
Gentzen's classic proof of the cut-elimination theorem for �rst-order logic
[8] uses a double induction: the main induction is on the number of logical
connectives and quanti�ers in the cut formula, and the sub-induction is on
the �rank� of the cut, which is some measure depending on the place of the
cut in the proof . A reduction step is de�ned for every derivation ending with
an application of the cut rule. For instance, a cut on a compound formula
is replaced by cuts on its sub-formulas, which necessarily contain a smaller
number of connectives. Let us demonstrate. The derivation

.... P11

Γ⇒ ∆, ϕ

.... P12

Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ ∧ ψ (∧R)

.... P21

ϕ,Γ⇒ ∆

ϕ ∧ ψ,Γ⇒ ∆
(∧L)

Γ⇒ ∆

is reduced to

.... P11

Γ⇒ ∆, ϕ

.... P21

ϕ,Γ⇒ ∆
Γ⇒ ∆

By the induction hypothesis, this cut on ϕ can be eliminated, hence the
original cut on ϕ ∧ ψ can also be eliminated.

In TCG things are much more complicated. Observe the following deriva-
tion in which a TC-formula is introduced on the right using Rule 5.4 and on
the left using Rule 5.6, and then a cut is made on the TC-formula. Again,
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we shall omit the context from the sequents in the following derivations.

.... P11

⇒ ϕ
{
s
x
, t
y

}
⇒ (TCx,yϕ) (s, t)

(5.4)

.... P21

ψ(x), ϕ(x,y) ⇒ ψ
{
y
x

}
ψ
{
s
x

}
, (TCx,yϕ) (s, t)⇒ ψ

{
t
x

} (5.6)

ψ
{
s
x

}
⇒ ψ

{
t
x

}
The natural reduction of this part of the proof is:

.... P11

⇒ ϕ
{
s
x
, t
y

}
.... P21

ψ(x), ϕ(x,y) ⇒ ψ
{
y
x

}
ψ
{
s
x

}
, ϕ
{
s
x
, t
y

}
⇒ ψ

{
t
x

}
ψ
{
s
x

}
⇒ ψ

{
t
x

}
The cut on the formula (TCx,yϕ) (s, t) is replaced by a cut on the formula

ϕ
{
s
x
, t
y

}
which is of smaller complexity. Hence, in this case we have a natural

reduction in the proof.
However, let us examine the case in which a TC-formula is introduced

on the right using Rule 5.5 and on the left using Rule 5.6, and then a cut is
made on the TC-formula.

.... P11

⇒ (TCx,yϕ) (s, r)

.... P12

⇒ (TCx,yϕ) (r, t)

⇒ (TCx,yϕ) (s, t)
(5.5)

.... P21

ψ(x), ϕ(x,y) ⇒ ψ
{
y
x

}
ψ
{
s
x

}
, (TCx,yϕ) (s, t)⇒ ψ

{
t
x

} (5.6)

ψ
{
s
x

}
⇒ ψ

{
t
x

}

The natural reduction for part of the proof is:

.

.

.

.
P11

⇒ (TCx,yϕ) (s, r)

.

.

.

.
P21

ψ(x), ϕ(x,y) ⇒ ψ
{ y

x

}
ψ
{

s
x

}
, (TCx,yϕ) (s, r)⇒ ψ

{
r
x

} (5.6)

ψ
{

s
x

}
⇒ ψ

{
r
x

}
.
.
.
.
P12

⇒ (TCx,yϕ) (r, t)

.

.

.

.
P21

ψ(x), ϕ(x,y) ⇒ ψ
{ y

x

}
ψ
{

r
x

}
, (TCx,yϕ) (r, t)⇒ ψ

{
t
x

} (5.6)

ψ
{

s
x

}
⇒ ψ

{
r
x

}
ψ
{

s
x

}
⇒ ψ

{
t
x

}
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Here, the cut on the formula (TCx,yϕ) (s, t) is replaced by three cuts on the
formulas: (TCx,yϕ) (r, t), (TCx,yϕ) (s, r) and ψ

{
r
x

}
. It is unclear what kind

of measure can be used here in order to achieve a reduction in the proof. The
number of applications of Rule 5.5 has gone down by one, yet the duplication
of the derivation ending with ψ(x), ϕ(x,y) ⇒ ψ

{
y
x

}
and the application of the

induction rule might o�set this. Another, much more crucial di�culty is the
following: while the two new cut formulas, (TCx,yϕ) (r, t) and (TCx,yϕ) (s, r),
are of complexity equal to that of the original cut formula (TCx,yϕ) (s, t) and
there is reduction of the depth, the real di�culty is that the new cut formula
ψ
{
r
x

}
is not related at all to the original cut formula. Thus it can be of

larger complexity than (TCx,yϕ) (s, t), unless we force some constraints on
the applicability of the induction rule.

While it might be possible to overcome these di�culties using some re-
strictions, there is still a much more fundamental problem connected with
the induction rule. So far we only examined cases in which the cut is made on
the principal formula of the premises (in our case - a TC-formula), but what
about other cases? For instance, it is unclear what should be the reductions
in cases where one of the premises is the conclusion of the induction rule and
the cut is made on the induction formula. A good example for such a case is
the proof of 5.5 in TC ′G. It is easy to see that we cannot eliminate the cuts
using the natural reductions just described since doing so prevents us from
applying the induction rule.

In order to avoid this problem, Gentzen applied a di�erent method for
the induction rule when proving the consistency of PAG [8, 9]. The consis-
tency proof of PAG is based on proving the cut elimination theorems only
for proofs ending with the empty sequent. Before applying the reduction
method on a given proof in order to reduce the cuts in it, Gentzen preforms
a preparatory step in which he eliminates all appearances of the induction
rule from the end-piece of the proof14 . The elimination of the induction rule
is done by replacing a complete induction up to a speci�c natural number
by a corresponding number of structural inference rules. In order to make
this replacement he �rst replaces all free variables which are not used as
eigenvariables in the end-piece of the proof by constants.

14The end-piece of a proof consists of all the sequents of the proof encountered if we
ascend each path starting from the end-sequent and stopping when we arrive to an opera-
tional inference rule. Thus the lower sequent of this inference rule belongs to the end-piece,
but its upper sequents do not.
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The transformation is done in the following way. Assume that within an
end-piece we have the following segment

.... P
′

Γ, ψ
{
a
x

}
⇒ ∆, ψ

{
s(a)
x

}
Γ, ψ

{
0
x

}
⇒ ∆, ψ

{
t
x

}
where P ′ is the sub-proof ending with Γ, ψ

{
a
x

}
⇒ ∆, ψ

{
s(a)
x

}
. Since all

free variables were eliminated, t is a closed term and hence there is a term
s(. . . (s(0)) such that ⇒ s(. . . (s(0)) = t is provable in PA without essential
cuts or induction. Therefore, there is also a proof Q of ψ(s(. . . (s(0)))⇒ ψ(t)
without essential cuts or induction. Let P ′ (b) be the proof which is obtained
from P ′ by replacing a by b throughout the proof.

Then an occurrence of the induction rule is replaced by:

.

.

.

.
P ′(0)

Γ, ψ
{

0
x

}
⇒ ∆, ψ

{
s(0)
x

} .
.
.
.
P ′(s(0))

Γ, ψ
{

s(0)
x

}
⇒ ∆, ψ

{
s(s(0))

x

}
Γ, ψ

{
0
x

}
⇒ ∆, ψ

{
s(s(0))

x

} .
.
.
.
P ′(s(s(0)))

Γ, ψ
{

s(s(0))
x

}
⇒ ∆, ψ

{
s(s(s(0)))

x

}
Γ, ψ

{
0
x

}
⇒ ∆, ψ

{
s(s(s(0)))

x

}

We continue applying these consecutive cuts up to the sequent

Γ, ψ
{

0
x

}
⇒ ∆, ψ

{
s(. . . (s(0))

x

}
. Then we use one more cut on the sequent

ψ(s(. . . (s(0)))⇒ ψ(t) to obtain a proof of Γ, ψ
{

0
x

}
⇒ ∆, ψ

{
t
x

}
.

So, why can't we use the same method for the TC-induction rule? The
problem is that this transformation uses special features of the natural num-
bers which we generally do not have in TCG. To see this, recall that the
equivalent form of the PAG induction rule in TCG is:

Γ, ψ (x) , s (x) = y ⇒ ∆, ψ
{
y
x

}
Γ, ψ

{
0
x

}
, (TCx,y (s (x) = y)) (0, t)⇒ ∆, ψ

{
t
x

}
This is a speci�c usage of the induction rule in TCG where ϕ is taken to be
s (x) = y. However, in the general case ϕ is an arbitrary formula. Thus given
any two closed terms s and t, unlike in PAG, we do not have a �built in�
measure for the ϕ-distance between them. The path from s to t by ϕ-steps
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is unknown in advance, and moreover it does not have to be unique. We
may have more than one path from s to t using ϕ-steps. For instance, if ϕ is
y > x then the path from '1' to '20' may be '1','3','17','20' or '1','20' and we
have no way of knowing it in advance.

Unfortunately, it is presently unclear whether we have cut elimination in
TCG, or rather we are required do add some derivable rules to the system
in order for it to admit cut elimination. It is also to be determined what
kinds of useful fragments of TCG do admit cut elimination in case TCG does
not. Thus, a possible way to overcome the last di�culty described above is
to restrict the induction rule of TCG by allowing only ϕ's of the form y = t
where {x} = Fv [t]. In this way we force a deterministic path of ϕ-steps be-
tween any two closed terms. Obviously, induction with this restriction still
includes PAG's induction rule. By allowing an application of the induction
rule only if ϕ is of such form we may be able to mimic the procedure given
by Gentzen and eliminate the occurrences of the induction rule from proofs
of the empty sequent. Then, by following the same reduction steps is seems
that we may be able to prove the consistency of this restricted TCG. This
will be left for further work.

We end by discussing one more proof-theoretic property of the system
RTCA - constructive consistency proof.

De�nition 5.21. A system is said to be consistent if the empty sequent is
not provable in it.

The system RTCA is surly consistent, since the natural numbers is a
model for it. However, there are good reasons to look for a syntactic consis-
tency proof. Beside consistency, constructive consistency proofs of the type
introduced by Gentzen[8], usually provide important additional information
about a system and its complexity. In Gentzen's method, each system is
assigned the least ordinal number needed for its constructive consistency
proof. This provides a measure for a complexity of a system which is useful
for comparing di�erent proof systems.

The constructive consistency proof of PAG entail that the ordinal number
of PAG is at most ε0 (for background on ordinal numbers see [12]). Another
theorem of Gentzen shows that it is exactly ε0. Hence, from Theorem 5.20,
we can conclude that the ordinal number of the system RTCA is ε0.
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6 Further research

The next list is a collection of related issues which require further work:

� An observation given in [1] is that in the presence of the existen-
tial quanti�er it will be possible to use an even simpler form of TC:(

˜TCx,yϕ
)
, which has the same meaning as (TCx,yϕ) (x, y). In this kind

of system we might not be able to substitute free variables by terms.

� What is the expressive power of ancestral logic if we disallow nesting
of the TC operator. Will such a system su�ce for formalizing mathe-
matics?

� Characterizing the class of all �rst-order formulas whose transitive clo-
sure is �rst-order de�nable.

� In chapter 5 it was shown that the system TCG does not captures all
the intuitive properties of the TC operator. A research task here is to
�nd what other �simple� rule(s?) should be added to TCG in order to
make it somewhat complete.

� In chapter 5 the property of cut-elimination for TCG was discussed.
Further research is required in order to determine what kinds of useful
fragments of TCG do admit cut-elimination. One possible option (al-
ready mentioned) is to restrict the induction rule of TCG by allowing
only ϕ's of the form y = t where {x} = Fv [t]. Another option is to �nd
out what are the conditions on a formula ϕ and terms s, t so that there
is a proof in TCG for⇒ (TCx,yϕ) (s, t) without the induction rule, and
then restrict the induction rule by those conditions .
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