BioTT: a Family of Brouwerian Intuitionistic Theories Open to Classical Reasoning

Mark Bickford¹, Liron Cohen², Robert L. Constable¹, and Vincent Rahli³

¹ Cornell University, USA ² Ben-Gurion University, Israel ³ University of Birmingham, UK

1 Introduction

One difference between Brouwerian intuitionistic logic and classical logic is their treatment of time. In classical logic truth is atemporal, whereas in intuitionistic logic it is time-relative. An example of a time-relative notion is that of Brouwer's choice sequences, which are finite sequences of entities (e.g., natural numbers) that are never complete, and can always be further extended with new choices [16; 5; 25; 26; 19; 27; 22]. This manifestation of the evolving concept of time in intuitionistic logic entails a notion of computability that goes far beyond that of Church-Turing [11, Sec.5]. Brouwer used this concept among other things to define the continuum [4, Ch.3], and it has further been used in so-called intuitionistic (weak) counterexamples to derive the negation of classical axioms such as the Law of Excluded Middle (LEM) [15; 9; 20; 17].

We have built an intuitionistic extensional type theory called BITT [7] (see https://github. com/vrahli/NuprlInCoq/tree/beth for its Coq formalization), which features choice sequences and is given meaning through a Beth model [28; 6; 14, Sec.145; 12, Sec.5.4; 11]. We have showed that this theory is anti-classical following the counterexamples mentioned above. This is not only due to the presence of choice sequences, but also to its Beth model, which provides an anti-classical notion of time, which forces some properties on choice sequences to be undecidable. We subsequently developed another intuitionistic extensional type theory called OpenTT [8] (see https://github.com/vrahli/NuprlInCoq/tree/ls3/ for its Coq formalization), which is given meaning through a "relaxed" notion of a Beth model, called the *open bar* model, which sufficiently weakens the "undecided" nature of choice sequences to enable validating classical axioms, such as LEM. OpenTT also features choice sequences, and includes standard choice sequence axioms, namely: the Axiom of Open Data, a density axiom, and a discreteness axiom [23; 24; 18; 11].

These two theories and models share a common core, which forms the basis for a family of extensional type theories with choice sequences, that can either be made anti-classical or classical-compatible depending on the chosen model. This family provides a computational setting for exploring the implications of time-relative constructs such as choice sequences, For example, it can enable the development of constructive Brouwerian real number theories. It also provides a mean to capture a more relaxed notion of time, providing a basis for more classically-inclined Brouwerian intuitionistic theories. Let us now describe this family of theories at a high level, which we call BioTT here for *Brouwerian Intuitionistic Open Type Theories*.

2 World-Based Calculus

BioTT relies on a untyped call-by-name λ -calculus, whose core syntax includes:

 $\begin{array}{l} v \in \texttt{Value} ::= vt \mid \star \mid \underline{n} \mid v \mid \lambda x.t \mid \texttt{inl}(t) \mid \texttt{inr}(t) \mid \langle t_1, t_2 \rangle \\ vt \in \texttt{Type} ::= \mathbb{N} \mid t_1 < t_2 \mid \mathbb{U}_i \mid \mathbf{\Pi} x: t_1.t_2 \mid \mathbf{\Sigma} x: t_1.t_2 \mid \{x : t_1 \mid t_2\} \mid t_1 + t_2 \mid t_1 = t_2 \in t \mid \texttt{Free} \\ t \in \texttt{Term} ::= x \mid v \mid t_1 t_2 \mid \texttt{let} \ x, y = t_1 \texttt{ in } t_2 \mid \texttt{fix}(t) \mid \texttt{case } t \texttt{ of inl}(x) \Rightarrow t_1 \mid \texttt{inr}(y) \Rightarrow t_2 \end{array}$

with numbers \underline{n} as primitives, injections, pairs, where x is a variable, and where v is a choice sequence name, which inhabit the type Free of *free* choice sequences (see [7, 8] for further details). In BioTT, a choice sequence is implemented as a *name*, which allows referring to the

sequence in computations (see below), along with its current state, which is a list of choices, e.g., a list of numbers for a choice sequence of numbers.

BioTT's core small-step call-by-name operational semantics allows in particular (1) β -reducing applications of λ -abstractions; (2) unrolling fixpoints, (3) examining choice sequences; (4) destructing pairs; and (5-6) destructing injections:

Note that this semantics is parameterized by a *world* w. BioTT is parameterized by a Kripke frame [21; 20] consisting of a set of *worlds* W equipped with a reflexive and transitive binary relation Ξ . To support computing with choice sequences, worlds allow storing choice sequences, and the above semantics allows applying the name of a choice sequence v to a number \underline{n} in order to access the \underline{n}^{th} choice made for v in the current world w, written $w[v][\underline{n}]$.

BioTT's core inference rules include standard sequent calculus rules such as the following Π -introduction rule, where H is a list of hypotheses (see [7; 8] for details): if $H, z : A \vdash b : B[x \setminus z]$ and $H \vdash A \in \mathbb{U}_i$ then $H \vdash \lambda z.b : \Pi x: A.B$.

3 Bar-Based Forcing Semantics

BioTT is given meaning through a family of forcing interpretations, where types are interpreted as Partial Equivalence Relations [1; 2; 10; 3], which are parameterized by a bar notion B. A bar b is a set of world extending (w.r.t. \sqsubseteq) a given world w (we write b_w to indicate the world w that b bars), and a bar "notion" is then a predicate B on bars. This interpretation is inductively-recursively [13] defined as (1) an inductive relation $w \models T_1 \equiv T_2$ that expresses type equality; and (2) a recursive function $w \models t_1 \equiv t_2 \in T$ that expresses equality in a type. In particular, this interpretation is closed under bars as follows:

$$\begin{split} w &\models T_1 \equiv T_2 \iff \exists b_w. \forall w' \in b_w. \exists T'_1, T'_2. (T_1 \Downarrow_{w'} T'_1 \land T_2 \Downarrow_{w'} T'_2 \land w' \models T'_1 \equiv T'_2) \\ w &\models t_1 \equiv t_2 \in T \iff \exists b_w. \forall w' \in b_w. \exists T'. (T \Downarrow_{w'} T' \land w' \models t_1 \equiv t_2 \in T') \end{split}$$

where $T \Downarrow_w T'$ states that T computes to T' in all extensions (w.r.t. \sqsubseteq) of w.

We can then show that according to this interpretation, BioTT forms a type system, in the sense that $w \models T_1 \equiv T_2$ and $w \models t_1 \equiv t_2 \in T$ are symmetric, transitive, and respect computation, and are also monotonic and local as expected for such possible-world semantics [28; 14; 12, Sec.5.4]. In particular, this is true when the predicate *B* specifies a topological space of bars.

Beth Bars. *B* can be instantiated so as to capture Beth bars as follows. A bar *b* of a world *w* is a Beth bar iff for all infinite chains of extensions $w \sqsubseteq w_1 \sqsubseteq w_2 \sqsubseteq \ldots$, there exists an $i \in \mathbb{N}$ such that $w_i \in b$. The resulting model allows validating the following axioms [7]:

- density: $\Pi n: \mathbb{N}. \Pi f: \mathcal{B}_n. \downarrow \Sigma a: Free. f = a \in \mathcal{B}_n$
- discreteness: $\Pi a, b$:Free. $(a = b \in B) + \neg (a = b \in B)$
- $\neg \text{LEM}: \neg \Pi P: \mathbb{U}_i . \downarrow (P+\neg P)$

where $\mathbb{N}_n := \{k : \mathbb{N} \mid k < n\}; \mathcal{B} := \mathbb{N} \to \mathbb{N}; \mathcal{B}_n := \mathbb{N}_n \to \mathbb{N}; \text{True} := \underline{0} = \underline{0} \in \mathbb{N}; \text{False} := \underline{0} = \underline{1} \in \mathbb{N}; \neg T := T \to \text{False}; \text{ and } \downarrow T := \{x : \text{True} \mid T\}.$

Open Bars. *B* can be instantiated so as to capture open bars as follows. A bar *b* of a world *w* is an open bar iff for all $w_1 \supseteq w$, there exists a $w_2 \supseteq w_1$ such that for all $w_3 \supseteq w_2$, $w_3 \in b$. The resulting model allows validating the following axioms [8]:

- open data: $\Pi \alpha$:Free. $P(\alpha) \rightarrow \downarrow \Sigma n$: $\mathbb{N}.\Pi \beta$:Free. $(\alpha = \beta \in \mathcal{B}_n \rightarrow \downarrow P(\beta))$
- density: $\Pi n: \mathbb{N}. \Pi f: \mathcal{B}_n. \downarrow \Sigma a: \text{Free}. f = a \in \mathcal{B}_n$
- discreteness: $\Pi a, b$:Free. $(a = b \in B) + \neg (a = b \in B)$
- LEM: $\Pi P: \mathbb{U}_i . \downarrow (P+\neg P)$

References

- Stuart F. Allen. "A Non-Type-Theoretic Definition of Martin-Löf's Types". In: *LICS*. IEEE Computer Society, 1987, pp. 215–221.
- [2] Stuart F. Allen. "A Non-Type-Theoretic Semantics for Type-Theoretic Language". PhD thesis. Cornell University, 1987.
- [3] Abhishek Anand and Vincent Rahli. "Towards a Formally Verified Proof Assistant". In: ITP 2014. Vol. 8558. LNCS. Springer, 2014, pp. 27–44. DOI: 10.1007/978-3-319-08970-6_3.
- [4] Mark van Atten. On Brouwer. Wadsworth Philosophers. Cengage Learning, 2004.
- [5] Mark van Atten and Dirk van Dalen. "Arguments for the continuity principle". In: Bulletin of Symbolic Logic 8.3 (2002), pp. 329–347.
- [6] Evert Willem Beth. The foundations of mathematics: A study in the philosophy of science. Harper and Row, 1966.
- [7] Mark Bickford, Liron Cohen, Robert L. Constable, and Vincent Rahli. "Computability Beyond Church-Turing via Choice Sequences". In: *LICS 2018*. ACM, 2018, pp. 245–254. DOI: 10.1145/ 3209108.3209200.
- [8] Mark Bickford, Liron Cohen, Robert L. Constable, and Vincent Rahli. "Open Bar a Brouwerian Intuitionistic Logic with a Pinch of Excluded Middle". In: CSL. Vol. 183. LIPIcs. Schloss Dagstuhl
 - Leibniz-Zentrum für Informatik, 2021, 11:1–11:23. DOI: 10.4230/LIPIcs.CSL.2021.11.
- [9] Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics. London Mathematical Society Lecture Notes Series. Cambridge University Press, 1987.
- Karl Crary. "Type-Theoretic Methodology for Practical Programming Languages". PhD thesis. Ithaca, NY: Cornell University, Aug. 1998.
- [11] Dirk van Dalen. "An interpretation of intuitionistic analysis". In: Annals of mathematical logic 13.1 (1978), pp. 1–43.
- [12] Michael A. E. Dummett. *Elements of Intuitionism*. Second. Clarendon Press, 2000.
- [13] Peter Dybjer. "A General Formulation of Simultaneous Inductive-Recursive Definitions in Type Theory". In: J. Symb. Log. 65.2 (2000), pp. 525–549.
- [14] VH Dyson and Georg Kreisel. Analysis of Beth's semantic construction of intuitionistic logic. Stanford University. Applied Mathematics and Statistics Laboratories, 1961.
- [15] Arend Heyting. Intuitionism: an introduction. North-Holland Pub. Co., 1956.
- [16] Stephen C. Kleene and Richard E. Vesley. The Foundations of Intuitionistic Mathematics, especially in relation to recursive functions. North-Holland Publishing Company, 1965.
- [17] Georg Kreisel. "A Remark on Free Choice Sequences and the Topological Completeness Proofs". In: J. Symb. Log. 23.4 (1958), pp. 369–388. DOI: 10.2307/2964012.
- [18] Georg Kreisel. "Lawless sequences of natural numbers". In: Compositio Mathematica 20 (1968), pp. 222–248.
- [19] Georg Kreisel and Anne S. Troelstra. "Formal systems for some branches of intuitionistic analysis". In: Annals of Mathematical Logic 1.3 (1970), pp. 229–387. DOI: http://dx.doi.org/10.1016/0003-4843(70)90001-X.
- [20] Saul A. Kripke. "Semantical Analysis of Intuitionistic Logic I". In: Formal Systems and Recursive Functions. Vol. 40. Studies in Logic and the Foundations of Mathematics. Elsevier, 1965, pp. 92– 130. DOI: https://doi.org/10.1016/S0049-237X(08)71685-9.
- [21] Saul A. Kripke. "Semantical Analysis of Modal Logic I. Normal Propositional Calculi". In: Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 9.5-6 (1963), pp. 67–96. DOI: 10.1002/malq.19630090502.

BioTT

- [22] Joan R. Moschovakis. "An intuitionistic theory of lawlike, choice and lawless sequences". In: Logic Colloquium'90: ASL Summer Meeting in Helsinki. Association for Symbolic Logic. 1993, pp. 191–209.
- [23] Joan Rand Moschovakis. Choice Sequences and Their Uses. 2015.
- [24] A. S. Troelstra. "Analysing choice sequences". In: J. Philosophical Logic 12.2 (1983), pp. 197–260.
 DOI: 10.1007/BF00247189.
- [25] Anne S. Troelstra. "Choice Sequences and Informal Rigour". In: Synthese 62.2 (1985), pp. 217–227.
- [26] Anne S. Troelstra. Choice sequences: a chapter of intuitionistic mathematics. Clarendon Press Oxford, 1977.
- [27] Wim Veldman. "Understanding and Using Brouwer's Continuity Principle". In: Reuniting the Antipodes — Constructive and Nonstandard Views of the Continuum. Vol. 306. Synthese Library. Springer Netherlands, 2001, pp. 285–302. DOI: 10.1007/978-94-015-9757-9_24.
- [28] Beth E. W. "Semantic Construction of Intuitionistic Logic". In: Journal of Symbolic Logic 22.4 (1957), pp. 363–365.