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Abstract. The Infinite Descent property underpins key verification tech-
niques, such as size-change program termination and cyclic proofs. De-
ciding whether the Infinite Descent property holds of a given program
or cyclic deduction is PSPACE-complete, with several exponential time
algorithms in the literature. In this paper, we consider algorithms with
better time complexity but which are (necessarily) incomplete. Con-
cretely, we formulate and evaluate a number of alternative algorithms for
semi-deciding Infinite Descent. Our aim is to improve average runtime
performance by utilising more efficient algorithms for specific subclasses of
input. We present Cyclone, a tool integrating these algorithms with an
existing (complete) decision procedure. We evaluate Cyclone on a large
suite of examples harvested from the Cyclist theorem prover, finding that
the incomplete algorithms achieve extremely high coverage and afford
substantial runtime improvement in practice. We thus believe that the
Cyclone tool will foster broader adoption of techniques based on Infinite
Descent and expand their practical applications.
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1 Introduction

Infinite Descent is an ω-regular liveness property that has important practical ap-
plications in the verification of software. For instance, it underpins the size-change
framework for checking program termination [16], in which a program’s call-graph
is used to produce an abstraction recording when the values manipulated by
the program (e.g. numbers) decrease as they are passed between function calls.
Infinite Descent then states that along all infinite paths through this call-graph,
we can trace a value that (strictly) decreases infinitely often. If the call-graph
satisfies this property then we know the program must terminate, since the order
used to interpret the decrease of values is well-founded. This technique is used,
for example, in the termination checker for the Agda proof assistant [1].

Infinite Descent also plays a crucial role in cyclic proof-theoretical techniques
for reasoning about inductive (and coinductive) properties [7,10,11,12,13,21,23].
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IntrE,0
2: ` E(0), O(0)

6: N(x) ` O(x), E(x)
Subst

5: N(y) ` O(y), E(y)
IntrO,s

4: N(y) ` O(y), O(s(y))
IntrE,s

3: N(y) ` E(s(y)), O(s(y))
SplitN

1: N(x) ` E(x), O(x)
∨R

0: N(x) ` E(x) ∨O(x)

Fig. 1: A cyclic proof that every natural number is either even or odd. The blue
trace witnesses the Infinite Descent, with progress marked by the blue circle.

Instead of using inference rules in which a (co)inductive invariant must be
explicitly provided, the invariants can be ‘discovered’ by repeatedly decomposing
a goal into subgoals that are either provable or reducible back to the original
goal, forming a cycle in the proof. The Infinite Descent condition is then used to
justify the soundness of such a cyclic proof graph. In proof-theoretic settings, the
notion of ‘decrease’ is usually called ‘progress’, and commonly corresponds to
particular logic-specific steps that ‘unfold’ instances of (co)inductive definitions.

For example, Fig. 1 shows a cyclic proof of the fact that every natural number
is either even or odd, in a system for first-order logic with inductive predicates.
The natural numbers predicate N is (inductively) defined via the rules N(0) and
N(s(x)) ⇐ N(x) (where s stands for the successor). The predicates E and O
denote even and odd numbers, respectively, and are mutually defined via the rules
E(0), O(s(x))⇐ E(x) and E(s(x))⇐ O(x). The SplitN rule performs a case
split on the predicate instance N(x), guided by the defining rules for N , which
substitutes 0 and s(y) for x in the left- and right-hand premises, respectively.
In the latter, y is a fresh variable (denoting the predecessor of x) for which we
know from the definition of N that N(y) must hold. The other steps of the proof
unfold the E and O predicate instances, and perform substitutions. A cyclic
proof has the structure of a tree with ‘backlinks’, i.e. a tree in which some of
the leaves (called buds) have an edge to another node (called its companion).
In Fig. 1, node 6 is a bud whose companion is (the syntactically equal) node 1.
When all buds link to an ancestor node (as in this case), the proof is said to be
(in) cycle normal (form), however this need not be the case in general. The proof
satisfies the Infinite Descent property since along the infinite path traversing the
cycle, we can trace a value (the instances of the N predicate) that progresses
(i.e. is unfolded by the SplitN rule) infinitely often.

This kind of cyclic reasoning has been employed widely to create both the-
oretical frameworks for program verification and inductive theorem proving
(e.g., [4,5,20,24,25,27,18]), as well the Cypress program synthesis tool [14] and
the automatic theorem provers Cyclist [6], Songbird [8], Inductor [22] and Cy-
cleQ [15]. Since the problem of deciding the Infinite Descent property is PSPACE-
complete [16,19], in practice these tools all implement one of a number of known
algorithms that have worst-case exponential runtimes [9]. Although this worst-
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case performance is not often encountered ‘in the wild’, these tools still rely
on deciding large numbers of problem instances. Therefore any speed up of the
Infinite Descent check has the potential to provide significant benefits in practice.

Our goal is to advance the state-of-the-art for deciding Infinite Descent and
thus push forward the practical use of automated cyclic reasoning and termination
checking. Our approach is to identify more efficient algorithms that only semi -
(co)decide Infinite Descent, along with (efficiently decidable) characterisations of
the subclass of instances on which they may return a definite answer. The idea
is that, since they do not need to uniformly treat all problem instances, these
algorithms may utilise particular structure in the input to return an answer more
quickly than the full decision procedures. We then heuristically combine these
semi-decision procedures into a heterogeneous pipeline, defaulting to a uniform
decision procedure in case none of them can return an answer.

In this paper we describe three such algorithms. The first decides an existing
criterion, proposed by Brotherston [3], called the Trace Manifold condition. The
other two decide novel criteria that we have formulated and call “Flat Cycles” and
“Descending Unicycles”, respectively. We analyse the coverage of these algorithms
by harvesting a large database of problem instances generated by the test suites
of the Cyclist theorem prover, which comprise inductive entailments of First-
Order Logic and Separation Logic. Guided by the analysis of these algorithms,
we combine and implement them within a new tool dubbed Cyclone, which
we integrate into Cyclist. We present an evaluation of our tool’s performance
on our harvested database, comparing it to the performance of the existing
decision procedures. We found that Cyclone demonstrates significant runtime
improvements, sometimes of several orders of magnitude.

Paper Outline. Sec. 2 formally defines the Infinite Descent problem, in a general
form, and sumarises the existing decision procedures. Sec. 3 describes the database
of problem instances that we harvested for evaluating our new algorithms. Sec. 4
then describes our novel semi-decision procedures. In Sec. 5 we present the
implementation of our tool, Cyclone, and compare its performance to the
existing methods implemented in Cyclist. Finally, Sec. 6 concludes.

2 Infinite Descent for Sloped Graphs

We begin by formally defining the Infinite Descent property in the abstract setting
of sloped graphs, following [9], which captures the essence of the Infinite Descent
problem in an application-independent way. That is, the formulation of Infinite
Descent in size-change termination, or some given cyclic logical proof system, are
special instances of the abstract definition we give here.

Infinite Descent tracks the ordering relationship between (abstract) values
along paths in a graph. The following definition of sloped graphs thus augments
the standard notion of a directed graph by associating with each node, or vertex,
a collection of abstract positions, and with each edge a relation assigning (flat or
downward) slopes between the positions associated with its end-points.
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2, ∅ 3, {N(y)} 4, {N(y)}
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Fig. 2: Sloped graph from Example 1

Definition 1 (Sloped graphs). We assume a set Pos of positions and a set
S = { , } of slopes, whose elements are called flat and downward, respectively.
– A sloped relation R ⊆ Pos×Pos×S is a partial function from pairs of positions
to slopes.

– A sloped graph SG is a tuple (V,E, Ps, (R(v,v′))(v,v′)∈E) such that:
(1) (V,E) is a directed graph with nodes V and edges E;
(2) Ps : V → ℘(Pos) is a function assigning a set of positions to every node;
(3) (R(v,v′))(v,v′)∈E is a family of sloped relations Rv,v′ ⊆ Ps(v)× Ps(v′)× S

indexed by edges.
We call the quantity max {|Ps(v)| | v ∈ V } the (vertex) width of SG.

Example 1. The cyclic proof shown in Fig. 1 can be abstracted by the sloped
graph SG = (V,E, Ps, (R(v,v′))(v,v′)∈E) defined as follows, and depicted in Fig. 2,
where we use inductive predicate instances as positions.
– V = {0, 1, 2, 3, 4, 5}.
– E = {(0, 1), (1, 2), (1, 3)(3, 4), (4, 5), (5, 6), (6, 1)}.
– Ps(0)=Ps(1)=Ps(6)={N(x)}, Ps(3)=Ps(4)=Ps(5)={N(y)}, Ps(2)=∅.
– R0,1 = R6,1 = {(N(x), N(x), )}, R1,3 = {(N(x), N(y), )},
R3,4 = R4,5 = {(N(y), N(y), )}, and R5,6 = {(N(y), N(x), )}.

Since a sloped graph is a form of directed graph, we also adopt the graph-
theoretic notions of (finite and infinite) paths through the graph, which we denote
by (vi)i∈α where α ≤ ω is the (ordinal that is the) length of the path.

A trace along a path in a sloped graph selects a position from each node in
the path, making sure that each position is related to the next by the sloped
relations associated with the edges that are traversed.

Definition 2 (Traces). A trace along an infinite path (vi)i∈α in a sloped graph
SG is an infinite sequence of positions τ = (pi)i∈α such that, for every i < α,
both pi ∈ Ps(vi) and Rvi,vi+1

(pi, pi+1, s) for some (necessarily unique) slope s.
When s =  we call i a progressing point in the trace. We may also write τ(vi)
to denote the ith position, pi. A trace is decreasing if it has infinitely many
progressing points. An infinite path is descending if it has a tail along which there
is a decreasing trace.

Definition 3 (Infinite Descent). A sloped graph is said to satisfy Infinite
Descent if all of its infinite paths are descending.
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Algorithm Time Complexity Upper Bound

VLA O(n5 · w2 · 22nw log(2nw))

SLA O(n2 · w ·Min(n4, 32w
2

) · 22w log(2w))

FWK O(n·w4·33w2

+ n3·w4·32w2

)

OR O(n3 · w4 · 32w2

)

Table 1: Time complexity bounds for Infinite Descent decision procedures

The problem of deciding whether a given sloped graph satisfies Infinite Descent
is PSPACE-complete [16,19]. There are two basic approaches for deciding the
Infinite Descent property described in the literature.

Automata-theoretic: One approach is to encode the problem as an inclu-
sion between ω-automata: a ‘path’ automaton that recognises words corresponding
to all infinite paths in the sloped graph and a ‘trace’ automaton that recognises
words corresponding to all potential descending traces. A sloped graph satisfies
Infinite Descent if and only if the former automaton is included in the latter. The
problem can be encoded using ω-words over either the vertices or the sloped rela-
tions of the sloped graph. We call these encodings the Vertex-Language Automata
(VLA) and the Slope-Language Automata (SLA) encodings, respectively.

Ramsey-theoretic: An alternative approach is to compute for each pair
of nodes the collection of sloped relations consisting of the compositions of the
sloped relations along (finite) paths between the two nodes, with slopes combined
according to the ordering  <  . Once this ‘composition closure’ is computed,
checking Infinite Descent amounts to verifying the presence of certain downward
slopes in the relations representing loops in the sloped graph. This encoding is
an instance of the algebraic path problem and can be solved using the Floyd-
Warshall-Kleene (FWK) algorithm [17]. By taking advantage of the specific
symmetric nature of the Infinite Descent setting, a so-called order-reduced (OR)
optimisation of this procedure is possible [9].

All these algorithms exhibit exponential runtime in the worst case. However
the complexity profile of each method depends, in varying proportions, on two
parameters of the sloped graph: the number of nodes n, and the vertex width w.
The worst-case complexity bounds are summarised in Table 1. A comprehensive
account of these methods and their comparative performance can be found in [9].

3 A Database of Sloped Graphs

In order to support our goal of identifying useful classes of sloped graphs for
which Infinite Descent can be (semi-)decided (more) efficiently, we generated a
large database of sloped graphs using the Cyclist automated theorem prover [6],
which we believe to be representative of problem instances arising in real-world
applications. Cyclist implements a generic engine for cyclic proof search, sup-
porting arbitrary (cyclic) logical systems by exposing an API to this engine. It
currently features a number of logics with inductively defined predicates, includ-
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Satisfies
Infinite Descent

Does not satisfy
Infinite Descent

(all)

FOL 260 6437 6697
SL 42692 27694 70386

(all) 42952 34131 77083

Table 2: Aggregated numbers of sloped graphs in our database

(a) Nodes, Edges (b) Width (c) Buds

Fig. 3: Distribution of various sloped graph metrics

ing first-order logic (FOL) and Separation Logic (SL), which come with test
suites of representative (valid and invalid) logical entailments. During a search
for a cyclic proof of a given entailment, Cyclist runs the Infinite Descent check for
each intermediate (partial) candidate proof it encounters. We modified Cyclist to
output a JSON representation of the corresponding sloped graphs. (Note that
Cyclist also employs a preprocessing procedure for minimizing the proof graphs,
which we discuss in Sec. 5.2.)

In total, we collected over 77,000 sloped graphs. Table 2 shows the numbers of
sloped graphs aggregated by the logic they were generated from and whether or
not they satisfy Infinite Descent. We also collated statistics pertaining to various
metrics of sloped graphs, namely the number of nodes, edges, buds, and vertex
width. Again aggregated by the logic, Fig. 3 shows the density functions of these
metrics. Across the database, per graph, the number of nodes is at most 107 and
the number of edges is at most 120, with graphs most frequently having around
20 nodes/edges. Additionally, graphs have a vertex width of at most 17, with
the most frequent quantity being around 8. We see a maximum of 16 buds in
any graph, with most of the graphs having around 2 buds. We observe that the
vertex width is not particularly correlated with the number of edges/nodes and,
in general, the width is low compared to the number of nodes. In contrast, in
both test suites, we can see a high correlation between the number of nodes and
edges with the two metrics being almost identical. We also see that, in general,
the more nodes/edges in a graph, the more buds. However, the number of buds is
generally much lower than the number of nodes. This is not surprising given that
the graphs are (proof) trees with (few) backlinks, rather than generally highly
connected graphs.
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4 Effective Semi-algorithms for Infinite Descent

We now present the novel (incomplete) semi-decision procedures that we devel-
oped. Concretely we present the following heuristics, analysing their runtime
complexity and coverage (the number of graphs in our database for which it
returns a definitive answer, i.e. “yes” or “no”):
Trace Manifold (TM): a criterion from [3], for which we provide a novel

algorithm and implementation. This heuristic returns “yes”/“don’t know”.
Flat Cycles (FC): a novel criterion based on the notion of flat edges in a

sloped graph. This heuristic returns “no”/“don’t know”.
Descending Unicycles (DU): a novel criterion based on non-overlapping

cycles in a sloped graph. This heuristic returns “yes”/“no”/“don’t know”.
We began by implementing the Trace Manifold criterion, but we found the
coverage of this method on our database to be very low. This prompted us to
formulate the other two criteria, which have better runtime complexity and verify
Infinite Descent on a much larger class of sloped graphs.

4.1 The Trace Manifold Criterion

The Trace Manifold criterion (TM) is a property of basic cycles in a sloped graph,
SG, that is a cycle normal tree with backlinks. In such graphs, each basic cycle
can be identified with a bud B, being the unique path in the graph leading to
B from its companion, denoted R(B). A structural connectivity relation, ≤SG,
over the buds can also be defined by relating two buds B1 and B2 precisely when
R(B1) lies along the basic cycle associated with B2.

A trace manifold comprises a set of traces for basic cycles.

Definition 4 (Trace Manifold). A set of (finite) traces for paths in a sloped
graph SG is called a trace manifold when it has the following form

{τS,B | S a strongly connected subgraph of SG,B ∈ S is a bud}

and satisfies the following.
(1) Each τS,B is a trace along the basic cycle of B.
(2) For all τS,B1 and τS,B2 , if B1 ≤SG B2 then τS,B1(R(B1)) = τS,B2(R(B1)).
(3) For every strongly connected subgraph, S, of SG there is a bud B ∈ S such
that τS,B has at least one progressing point.

The properties of a trace manifold entail that its constituent traces can be
combined to yield descending traces for each infinite path.

Proposition 1 (Trace Manifold Criterion [3, Prop. 7.2.3]). If a (cycle
normal) sloped graph has a trace manifold, then it satisfies Infinite Descent.

To our knowledge, the algorithm we now describe is the first concrete algorithm
proposed to decide the trace manifold criterion. Ultimately, however, given its
low coverage and potentially exponential runtime, we decided not to include it
in Cyclone’s final pipeline. For this, and for space reasons, we describe the
algorithm only informally; details are given in the appendix.
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Algorithm. Firstly, check if the sloped graph, SG, is in cycle normal form,
returning “don’t know” if not. Otherwise, create the trace manifold graph of SG:
a directed graph whose nodes are all pairs consisting of a bud, B, and a trace
along its associated basic cycle, taking edges ((B, τ), (B′, τ ′)) iff B ≤SG B′ and
τ(R(B)) = τ ′(R(B)). Then, for each strongly connected subgraph, S, (wlog)
choose a bud, B ∈ S and check that, a DFS in the undirected trace manifold
starting from some node (B, τ) has the following properties: (1) a node (B′, τ ′)
is visited for every bud B′ ∈ S; (2) for every pair of buds B1, B2 ∈ S such
that B1 ≤SG B2, an edge involving B1 and B2 is traversed; and (3) a node is
visited containing a trace with a progression point. This check succeeds iff a trace
manifold exists. So, return “yes” in this case, otherwise return “don’t know”.

Complexity and Practical Runtime Evaluation. The algorithm described
above is exponential in both the number of buds and the number of nodes of
the sloped graph, due to the size of the trace manifold graph: quantification
over all strongly-connected subgraphs leads to the exponential dependency on
the number of buds, and the quantification over all traces following basic cycles
leads to the exponential dependency in the number of (sloped graph) nodes.
Overall, the algorithm has a worst-case O(2β · (|V | · w|V | + β2 · w|V |)) runtime
complexity, where β is the number of buds of the sloped graph, and w is the
vertex width. Note that, given the set of buds (information that is provided by
Cyclist), checking whether a graph is in cycle normal form takes only polynomial
time. Despite the high complexity, our evaluation revealed that the algorithm
performs well in practice, since the number of traces is usually fairly small.

Evaluating the implementation of our algorithm on our database of sloped
graphs we discovered that, on average, its runtime performance is significantly
better than the state-of-the-art complete method (OR). We observed that the
more edges in the input sloped graph, the faster our implementation of TM
compared to that of OR. Our implementation was at most 29% slower than OR,
and up to 1,970% faster. However, despite its favourable runtime performance
it only covered 31.2% of the sloped graphs in our database that satisfy Infinite
Descent, and thus only 17.38% of the database overall. Moreover, although 48.4%
of graphs in the database are in cycle normal form, TM returns an answer on
only 35.9% of these. Interestingly, though, almost all cycle normal graphs in our
database satisfying Infinite Descent also satisfy TM.

4.2 Flat Cycles

This section presents a novel linear runtime method for checking if a sloped
graph does not satisfy Infinite Descent. For this, we first define the notion of
the flat projection graph. Intuitively, the flat projection graph of a sloped graph
is a directed graph with edges only between two nodes that have no downward
position slope between them.
Definition 5 (Flat projection graph). The Flat Projection Graph of a sloped
graph SG = (V,E, Ps, (R(v,v′))(v,v′)∈E) is the graph SG = (V,E ), where

E = {(u, v) | (u, v) ∈ E ∧ ∀p ∈ Ps(u) ∀q ∈ Ps(v). (p, q, ) /∈ Ru,v}
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Fig. 4: Sloped graphs and their Flat Projection graphs (in blue)

Proposition 2 (Flat Cycles criterion (FC)). Let SG be a sloped graph. If
SG has a cycle then SG does not satisfy Infinite Descent.

Example 2. Fig. 4 shows two examples of sloped graphs: one that does not satisfy
the flat cycles criterion and one that does. Fig. 4a presents a sloped graph with
two nodes: node 0 with one position, p0, and node 1 with two positions, p1, p′1.
Since there is a downward slope in R1,0, (1, 0) /∈ E and therefore the flat
projection graph of this sloped graph (presented in blue) does not contain a cycle.
This, in turn, entails that FC does not yield a decision on this graph. On the
other hand, Fig. 4b presents a sloped graph with three nodes: node 0 having one
position and nodes 1, 2, having two positions each. Again, (1, 0) /∈ E because
there is a downward slope in R1,0. However, because there is no downward slope
in either R0,2 or R2,0, we get that (0, 2) ∈ E and (2, 0) ∈ E , thus, there is
a cycle in the flat projection graph (presented in blue), which means that the
sloped graph satisfies the flat cycles criterion. Indeed, the sloped graph portrayed
in Fig. 4b does not satisfy Infinite Descent, as Prop. 2 entails.

While FC may seem like a strong condition, requiring an entire cycle in the
graph with no downward slopes on any of its edges, in practice it is very frequent
and covers 80.77% of the graphs in the database that do not satisfy Infinite
Descent, and thus 35.76% of the entire database.

Algorithm. Algo. 1 checks if a sloped graph satisfies Infinite Descent using the
FC criterion. It generates the flat projection graph and checks it for cycles using
a depth-first search (DFS). If there is a cycle, we know from Prop. 2 that the
sloped graph does not satisfy Infinite Descent and so return “no”. Otherwise, the
algorithm returns “don’t know”.

Complexity and Practical Runtime Evaluation. The algorithm goes over
all edges in the sloped graph (|E| iterations) and for each one it checks, in time
quadratic in the vertex width of the input graph, whether its associated sloped
relation has no downward slope. If the relation has no downward slope we add
the edge to the flat edges set, which can be done in O(1) if we store this set as
an adjacency linked list for every node in the graph. Then we perform a DFS on
the flat projection graph which has runtime complexity of O(|V |+ |E |). Since
E ⊆ E, in the worst case |E | = O(|E|), which makes the worst-case runtime
O(|E| · w + |V |+ |E|) = O(|V |+ |E| · (w + 1)).
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Algorithm 1 Infinite Descent by the Flat Cycles Criterion
Input: Sloped Graph SG = (V,E, Ps, (R(v,v′))(v,v′)∈E), vertex width = w
Output: “no” if SG has a flat cycle and “don’t know” otherwise
1: E := ∅
2: for all (u, v) ∈ E do . |E| iterations
3: if (p, q, ) 6∈ Ru,v for all p ∈ Ps(u), q ∈ Ps(v) then . O(w2)
4: E ← E ∪ {(u, v)} . O(1)
5: if DFS(V,E ) detects a cycle then return “no” . O(|V |+ |E |)
6: else return “don’t know”

Fig. 5: Flat Cycles Runtime by Nodes and Edges

Fig. 5 shows the runtime of checking the criterion as a function of either
the number of nodes or the number of edges in the graph. The values in the
figure are an average of the runtime among all sloped graphs with each number
of nodes/edges. We can see a linear growth in the runtime in both graphs, as
expected from the runtime complexity analysis.

4.3 Descending Unicycles

Having defined in the previous section a linear-time algorithm that covers a
significant amount of the graphs in the database that do not satisfy Infinite
Descent, in this section, we present a novel, polynomial-time criterion that covers
a significant amount of the graphs that also do satisfy Infinite Descent.

We first identify a class of sloped graphs we call unicycles graphs. We say that
a path from cycle c to cycle c′ is any path v0, ..., vn such that v0 ∈ c and vn ∈ c′.

Definition 6 (Unicycles graph). A directed graph G = (V,E) is a unicycles
graph if for every two distinct basic cycles c, c′ in G, if there is a path from c to
c′, then there is no path from c′ to c.

Note that a unicycles graph necessarily does not contain any overlapping
cycles, i.e., two cycles with some shared node(s). Thus, e.g., the graph in Fig. 4b
is not a unicycles graph since there is a path in both directions through the node
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Fig. 6: Unicycles Graphs

0. However, the graph in Fig. 4a is a unicycles graph because it has just one
cycle. The graphs in Fig. 6 are unicycles graphs because, in both cases, although
there is a path from c1 = 0, 1 to c2 = 2, 3, there is no path from c2 to c1.

The key insight is that if a sloped graph is a unicycles graph, then the infinite
paths in the sloped graph are of the form π = v0, ..., vm, (u0, ..., uk)

ω, with
u0, ..., uk a basic cycle in the graph. This means that checking Infinite Descent
on unicycles graphs amounts to checking whether, for every basic cycle c in the
graph, the path cω has a progressing trace. We next formalize this requirement.

Definition 7 (Simply descending graph). we define the following, given a
sloped graph SG = (V,E, Ps, (R(v,v′))(v,v′)∈E).
(1) The positions graph induced by a path π = v1, . . . , vm in SG, denoted SGposπ ,

is a directed graph (Vπ, Eπ) with a distinguished subset of progressing edges
Progπ ⊆ Eπ, defined by:
– Vπ = {(vi, p) | 1 ≤ i < m and p ∈ Ps(vi)}
– Eπ = {((vi, p), (vi+1, q)) | 1 ≤ i ≤ m and ∃s.(p, q, s) ∈ Rvi,vi+1

}
– Progπ = {((vi, p), (vi+1, q)) | 1 ≤ i < m and (p, q, ) ∈ Rvi,vi+1

}
(2) A basic cycle c in SG is said to be descending if SGposc has a basic cycle

with at least one progressing edge (i.e., an edge in Progc).
(3) We say that SG is simply descending if every basic cycle in SG is descending.

Example 3. The graph SG in Fig. 4a is simply descending because the basic cycle
(0, p0), (1, p

′
1) of SG

pos
(0,1) has a progressing edge. The graph SG in Fig. 4b is not

simply descending, because its positions graph SGpos(0,2) has no progressing edge,
and thus its basic cycle 0, 2 is not descending. Fig. 6 illustrates two sloped graphs
with the same underlying directed graph. The graph in Fig. 6a is simply descending
because both c1 = (0, 1) and c2 = (2, 3) are descending cycles. However, the
graph in Fig. 6b is not simply descending because c2 is not descending.

For unicycles graphs, the simply descending criterion is both sound and
complete for Infinite Descent.

Proposition 3 (Descending Unicycles criterion (DU)). If SG is a uni-
cycles sloped graph, then SG satisfies Infinite Descent iff it is simply descending.

Like the FC criterion, the DU criterion seems to be a strong condition in
requiring that cycles in the sloped graph do not overlap. However, again, in
practice, this requirement is satisfied in 90.69% of all graphs in our database,
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Algorithm 2 Infinite Descent by the Descending Unicycles Criterion

Input: Sloped Graph SG = (V,E, Ps, (R(v,v′))(v,v′)∈E), vertex width = w
Output: “don’t know” if SG is not a unicycles graph, “yes” if Descending

Unicycles holds for SG and “no” otherwise
1: SCCs, backedgesLowLinks← Tarjan(V,E) . O(|V |+ |E|)
2: if hasDuplicates(backedgesLowLinks) then . O(|V |)
3: return “don’t know”
4: for all SCC ∈ SCCs do . O(|V |) iterations
5: if not isDescendingCycle(SCC, SG) then . O(w2 · |SCC|)
6: return “no”
7: return “yes”

which makes for almost complete coverage of the database. However, unlike the
FC criterion, it can return both a definite “yes” and a definite “no” answer.

Algorithm. Algo. 2 checks if a sloped graph that is a tree with backlinks
satisfies Infinite Descent using the DU criterion. First, it calculates the strongly
connected components (SCCs) of the graph, together with the low link of each
bud’s destination using Tarjan’s algorithm [26]. Note that a graph has overlapping
cycles if and only if there are two buds whose destination nodes have equal low
links. That is because two cycles overlap if and only if they form a strongly
connected set and because the buds’ destination nodes have the same low link
if and only if they are in the same SCC. Thus, if there are duplicates in this
backedgesLowLinks list, then the graph is not a unicycles graph and we return a
“don’t know”. Otherwise, the graph is a unicycles graph, which means that every
strongly connected component is a basic cycle. Then, we go over all SCCs and
check if they are descending cycles of SG. If and only if so, by Prop. 3 we get that
SG satisfies Infinite Descent. Checking if a cycle c is a descending cycle amounts
to running Tarjan’s algorithm on SGposc while also checking with each edge if
it is progressing. We find a strongly connected component with a progressing
edge in SGposc if and only if c is a descending cycle in SG. That is because the
progressing edge must be a part of a basic cycle and because every basic cycle is
a part of a SCC.

Complexity and Practical Runtime Evaluation. Line 1 uses Tarjan’s al-
gorithm, which has a runtime complexity of O(|V |+ |E|). It also returns some
of the low links that are generated by Tarjan’s algorithm, of which there are
O(|V |). Line 2 looks for duplicates in the returned low links list, which is done
in O(|V |) (on average) by generating a hash set from the list and comparing
its size to the low links list’s size. Finally, line 4 iterates over all SCCs and for
each one checks if it is descending using Tarjan’s algorithm on SGposSCC . SG is
a unicycles graph, and so in any SCC of SG the number of nodes is equal to
the number of edges. Further, since each edge in a strongly connected compo-
nent SCC has O(w2) corresponding edges in SGposSCC , Tarjan’s algorithm on
SGposSCC has runtime complexity of O(|SCC| + w2 · |SCC|). Since the SCCs
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(a) By Nodes and Edges (b) By Width (c) By Buds

Fig. 7: Descending Unicycles Runtime

of a graph are a partition of its nodes, the runtime complexity of the loop in
Line 4 is O(|V |+ w2 · |V |). Overall, then, the runtime complexity of Algo. 2 is
O((|V |+ |E|) + |V |+ (|V |+ w2 · |V |)) = O(w2 · |V |+ |E|).

Fig. 7 shows the runtime of checking the DU criterion as a function of the
number of nodes, edges, and buds, as well as the vertex width of the graph,
with each point in the figure averaging the runtime among all sloped graphs
with the associated number of nodes/edges/buds or vertex width. Because of
the high correlation between the number of nodes and edges in a sloped graph,
we plot both metrics in a single graph. In Fig. 7b, we see the highest runtimes
around width 10 because the graphs that have the most amount of nodes/edges
in our database also all have a width of around 10. The trend in Fig. 7a is only
somewhat linear because the algorithm only traverses the positions of nodes in
cycles. A clear linear trend is observed in Fig. 7c which plots the runtime as a
function of the number of buds in the graph, which, in unicycles graphs, is the
number of cycles. This indicates that the algorithm performs what seems to be a
constant amount of work for each cycle in the sloped graphs from our database.
This implies that cycles have a consistent size, and together with Fig. 7a we can
infer that as the size of cyclic pre-proofs grow, so does the number of cycles.

5 The Cyclone Verifier and its Evaluation

Having reported above on the individual runtime performance of our implemen-
tations of each of the incomplete methods, we now present our integrated tool,
Cyclone, which combines these into a pipeline that defaults to a complete
method (specifically, OR) for cases not covered by our new methods. We also
present the results of our experimential evaluation, comparing Cyclone with
each of the complete decision procedures alone as they are implement in [9]. We
implemented each of our new algorithms, as well as Cyclone itself, in C++ and
integrated into the Cyclist prover framework [6]. The experiments we report on,
both in the current and previous section, were all performed on an Apple M1
CPU with 8GB of RAM, running macOS Sonoma.

5.1 Composing the Methods in Cyclone

The composition of the methods that Cyclone uses is presented in Algo. 3. As
mentioned in sec. 4.1, we do not use the TM method: Cyclone only uses the
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Algorithm 3 Cyclone

Input: Sloped Graph SG = (V,E, Ps, (R(v,v′))(v,v′)∈E)
Output: “yes” if SG satisfies Infinite Descent and “no” otherwise
1: if InfDescByFC(SG) = “no” then return “no”
2: DU ← InfDescByDU(SG)
3: if DU 6= “don’t know” then return DU

4: return InfDescByOR(SG)

(a) Method Usage Distribution (b) Method Runtime

Fig. 8: Cyclone Methods Distribution and Runtime

FC and DU methods. It first applies the FC criterion to try and return a very
fast “no”. If FC returns a “don’t know”, it then uses the DU criterion to try and
return a (not as) fast “yes” or a “no”. Finally, if DU also returns “don’t know”,
Cyclone resorts to using the existing, complete and exponential OR algorithm
to obtain a definitive answer.

Fig. 8a shows the distribution of methods from which Cyclone derived its
answer when run on our database. Fig. 8b presents the average runtime of the
different methods used in Cyclone, aggregated by number of edges, as well as
the interquartile ranges. We plot the runtimes only as a function of the number
of edges since we observed that the other parameters of the complexity analysis
have a high correlation with this parameter. The FC method is considerably
faster than the other two, with what appears to be a constant line. The DU
method appears to be slower than the FC but is still much faster than OR, which
looks at least polynomial. Note that the faster the method the lower its coverage,
and recall that FC covers 35.76% of the graphs in the database, whilst DU covers
90.69%. The OR method, which has a complete coverage of the database, is the
slowest method. We run the methods in ascending order of runtimes because
even when FC returns a “don’t know”, this still happens fast enough that the
overhead does not noticeably affect the overall runtime. The same is true for the
DU method compared to the runtime of OR.

Fig. 8a shows that Cyclone decides Infinite Descent in polynomial time on
around 92% of the sloped graphs in our database. This high coverage, together
with the polynomial complexity of our incomplete methods, is what enables
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(a) All Methods

(b) Absolute Overhead wrt Cyclone (c) % Overhead wrt Cyclone

Fig. 9: Methods Runtime Comparison

the high performance of Cyclone. Furthermore, as mentioned, even on the
remaining 8% of graphs, the overhead of running them is so low compared to the
runtime of the complete method that the overall performance is unaffected.

5.2 Comparison with State-of-the-Art Methods

We now report on our evaluation of Cyclone against the state-of-the-art methods
(VLA, SLA, FWK, and OR) for deciding Infinite Descent using the database
described in Sec. 3. The figures in this section again present aggregated average
runtime of each method by the number of edges, and the interquartile ranges.
Additionally, we compare the runtime overhead of each of the existing methods
with Cyclone as the baseline.

Fig. 9a plots the runtime of all methods using a logarithmic scale. It shows a
clear difference in the various methods’ runtimes and, most importantly, that
Cyclone is the fastest among them. The runtime of every method grows some-
what sub-exponentially with the number of edges in the sloped graph. This might
be because the sloped graphs in the database do not have many edges, so the
exponential trend of the runtime does not yet manifest itself experimentally.

Fig. 9b and Fig. 9c present, respectively, the absolute overhead in milliseconds
and the percentage overhead of each complete method with respect to Cyclone.
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Apart from the SLA method, the average percentage overhead increases as
the graph size increases. This shows that the runtime complexity difference of
the methods indeed manifests itself in the experimental results. Observe that
Cyclone is between around 80% to around 350% faster than the fastest method
(OR), between around 480% to around 2200% faster than VLA, between 480%
and 43,000% faster than FWK.

Finally, looking at the SLA method we can see a constant line in the runtime.
This is because we used a timeout of 3 seconds in our tests, and SLA seems to
hit this timeout after a certain size of input. This explains why, in contrast with
the other methods, the percentage overhead for SLA decreases as the number of
edges increases. The timeout limit notwithstanding, we can still see a tremendous
advantage to Cyclone, which is between around 3× 104% and 5× 106% faster
than the SLA method. These results show that Cyclone significantly improves
the practical runtime of the Infinite Descent check on real-world sloped graphs.

As noted in Sec. 3, our database contains the sloped graphs that Cyclist
produced directly from concrete cyclic pre-proofs. However, Cyclist also pre-
processes each sloped graph before handing it to the Infinite Descent check. This
consists of pruning nodes that do not lie along cycles and collapsing non-branching
paths, which considerably reduces the size of the graphs whilst maintaining
the structure necessary for checking Infinite Descent. We also collected these
minimised forms of the sloped graphs generated by Cyclist, and then evaluated
Cyclone against the state-of-the-art methods on this preprocessed dataset. Here,
Cyclone is still 90% to 170% faster than the best performing other method,
which again is the OR method.

6 Conclusion

We introduced Cyclone, an efficient and general tool for deciding the Infinite
Descent property, implemented by combining with existing exponential decision
procedures two novel, incomplete but polynomial-time, algorithms exploiting
statistically significant structural properties of sloped graphs. We demonstrated,
on real-world data, Cyclone’s superior runtime performance compared to ex-
isting approaches. Moreover, the Cyclone tool is open-ended in that it may
incorporate additional semi-decision procedures as they are developed.

We evaluated Cyclone on a dataset generated by the Cyclist prover, consisting
of graphs corresponding to cyclic pre-proofs from its test suites. To broaden
coverage of real-world use cases, we plan to expand the dataset. In particular,
since verifying Infinite Descent supports program termination verification via
the size-change principle, we aim to create a dataset of termination instances,
generated from, e.g. Agda’s termination checker, for future evaluation. We also
plan to explore preprocessing methods other than Cyclist’s minimisation, which
may better align with our methods and further improve Cyclone’s performance.
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A Additional Material for Section 4

A.1 Details on The Trace Manifold Criterion

Here we present the details of the incomplete Trace Manifold criterion from
sec. 4.1. Recall that the criterion applies to sloped graphs that are trees with
backlinks, in cycle normal form, for which we have observed that the basic cycles
are in one-to-one correspondence with the buds. In the formulation that follows,
we thus refer to the basic cycle associated with a bud B using the notation CB .
Formally, this cycle is the path from the companion of B, denoted R(B), to
B itself. We also reprise, formally, the definition of the structural connectivity
relation.

Definition 8 (Structural Connectivity). Let SG be a sloped graph whose
underlying graph is a tree with backlinks, in cycle normal form. The structural
connectivity relation, ≤SG, for SG is the relation on the buds of SG defined by
B1 ≤SG B2 iff R(B2) appears on the basic cycle CB2 .

Notice it is immediate from this definition that B ≤SG B always holds, for
any bud B.

We now recall the definition of a trace manifold for such a sloped graph.

Definition 4 (Trace Manifold). A set of (finite) traces for paths in a sloped
graph SG is called a trace manifold when it has the following form

{τS,B | S a strongly connected subgraph of SG,B ∈ S is a bud}

and satisfies the following.
(1) Each τS,B is a trace along the basic cycle of B.
(2) For all τS,B1 and τS,B2 , if B1 ≤SG B2 then τS,B1(R(B1)) = τS,B2(R(B1)).
(3) For every strongly connected subgraph, S, of SG there is a bud B ∈ S such
that τS,B has at least one progressing point.

We note that this definition differs slightly from Brotherston’s [3, Def. 7.2.1],
which indexes the elements of trace manifolds by subgraphs defined as the union
of the basic cycles associated with a set of buds that is weakly connected by the
structural connectivity relation (i.e. a set of buds for which, when viewing the
structural connectivity relation as a graph, there is an undirected path between
any two buds in the set). Brotherston in fact shows ([3, Lemma 7.1.7]) that these
are in one-to-one correspondence with the strongly connected subgraphs. Thus,
we choose to define trace manifolds in terms of the latter, since we feel that this
is a more natural definition.

Example 4. Fig. 10 shows two sloped graphs having same underlying directed
graph, which has two overlapping basic cycles, c1 = 0, 1 and c2 = 0, 2, associated
with bud nodes 1 and 2, respectively, both having companion node 0. This means
that there are three strongly connected components: {0, 1}, {0, 2} and {0, 1, 2}.
Moreover, we have that 1 ≤SG 2 and 2 ≤SG 1. The sloped graph in Fig. 10a
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Fig. 10: Graphs with Overlapping Cycles

0, {p0, p′0}

1, {p1, p′1}
p0
 
p1

p′0 p
′
1

p1 p0

p′1 p
′
0

(a) Satisfies TM

0, {p0, p′0}

1, {p1, p′1}
p0
 
p1

p′0 p
′
1

p1 p
′
0

p′1 p0

(b) Does not satisfy TM

Fig. 11: Unicycles Graphs

satisfies TM, since we can pick the following traces: τ{0,1},1 = τ{0,1,2},1 = p0, p1
and τ{0,2},2 = τ{0,1,2},2 = p0, p2. However, the sloped graph in Fig. 10b does
not satisfy TM because there is no choice of traces for the strongly connected
component {0, 1, 2} that all satisfy condition (2) of Def. 4 at the same time: if
we choose, e.g., τ{0,1,2},1 = p0, p1 and τ{0,1,2},2 = p′0, p

′
2, then the condition is

satisfied for the choices B1 = B2 = 1 and B1 = B2 = 2, but not the choice
B1 = 1 and B2 = 2 since p0 6= p′0. Even though this sloped graph fails to satisfy
TM, it does in fact satisfy Infinite Descent. In particular, this is a sloped graph
corresponding to Berardi and Tatsuta’s 2-hydra example [2].

Example 5. Note that when a sloped graph is a unicycles graph, the TM crite-
rion is stricter than the DU criterion. That is because a trace manifold for a
unicycles graph requires there to be a trace with a progression point along a
single travsersal of a basic cycle, while the DU criterion more permissively allows
several consecutive traversals of the cycle in order to witness a descent. Fig. 11
presents two sloped graphs having the same underlying directed graph, which is
a unicycles graph, that are both simply descending. However, whilst the graph
in Fig. 11a satisfies TM, the graph in Fig. 11b does not, because we cannot pick
any trace τ{0,1},1 along the cycle 0, 1 that satisfies both conditions (2) and (3) of
Def. 4: although the trace p0, p′1 has a progression point, it does not return to the
position p0 in the companion 0 and so fails to satisfy condition (2); furthermore,
although the trace p′0, p′1 returns to the position p′0 in the companion 0, it has no
progression points and so fails to satisfy condition (3).

Algorithm. Our algorithm for deciding the TM criterion essentially derives
from the following notion a trace manifold graph.
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Definition 9 (Trace manifold graph). Let SG be a sloped graph that is a
tree with backlinks, in cycle normal form. The trace manifold graph of SG is the
directed graph G = (T , E) defined by:

T = {(B, τ) | B is a bud of SG and τ is a trace of CB}
E = {((B, τ), (B′, τ ′)) ∈ T × T | B ≤SG B′, τ(R(B)) = τ ′(R(B))}

The following crucial property relates trace manifolds to the trace manifold
graph just defined.

Proposition 4. Let SG be a sloped graph that is a tree with backlinks, in cycle
normal, and suppose Buds(SG) is the set of its buds. Moreover, let G = (T , E)
be the trace manifold graph of SG. Then SG has a trace manifold iff for every
weakly ≤SG-connected set B ⊆ Buds(SG) we have that there is a weakly connected
set TB ⊆ T of trace manifold nodes such that:

(1) For each B ∈ B, there is some trace τ such that (B, τ) ∈ TB.
(2) For all B,B′ ∈ B such that B ≤SG B′, there are traces τ and τ ′ such that

(B, τ) ∈ TB, (B′, τ ′) ∈ TB, and ((B, τ), (B′, τ ′)) ∈ E
(3) There is some (B, τ) ∈ TB such that τ has a progression point.

Proof. (⇒) Suppose SG has a trace manifold, and let B ⊆ Buds(SG) be a weakly
≤SG-connected set. Let S =

⋃
B∈B CB be the subgraph of SG that is the union of

the basic cycles CB associated with the buds B ∈ B. Note that this is subgraph is
strongly connected (cf. [3, Lemma 7.1.7]). Also, clearly, the subset of its nodes that
are buds is exactly B. Take the set of nodes TB = {(B, τ) ∈ T | B ∈ B} ⊆ T . We
now show that TB is a weakly connected set in G. Let (B, τ), (B′, τ ′) ∈ TB. Thus,
B,B′ ∈ B. Since B is weakly ≤SG-connected, we know that there is an undirected
≤SG-path B0, . . . , Bm (m > 0), with B = B0 and B′ = Bm such that for every
i < m we have Bi ≤SG Bi+1 or Bi+1 ≤SG Bi. By (2) in the definition of a trace
manifold, we also get that (w.l.o.g) τS,kp(R(Bkp)) = τS,kp+1(R(Bkp)). Therefore,
(w.l.o.g) ((CBkp

, τS,kp), (CBkp+1
, τS,kp+1)) ∈ Eτ . Thus, we get an undirected path

from (CBi
, τS,i) to (CBj

, τS,j) in G, which means that TS is a weakly connected
set in G. Now we show that the three requirements in Prop. 4 hold:

1. By the definition of TS we know that for every Bi ∈ BS we have that
(CBi

, τS,i) ∈ TS .
2. Let Bi, Bj ∈ BS such that Bi ≤SG Bj . By the definition of TS , we have

that (CBi , τS,i), (CBj , τS,j) ∈ TS and also, because Bi ≤SG Bj , by (2) in the
definition of the trace manifold we know that τS,i(R(Bi)) = τS,j(R(Bi)),
which means that by the definition of E we have
((CBi

, τS,i), (CBj
, τS,j)) ∈ E .

3. From (3) in the definition of the trace manifold, we get that there is an i
such that τS,i has a progress point, which means that (CBi , τS,i) ∈ TS and
that τS,i is progressing

(⇐) Let BS ⊆ Bud(D) be a weakly ≤SG-connected set, CS := {CB | B ∈ BS}
and S :=

⋃
CS . Because BS is weakly ≤SG-connected, we know that there is a
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weakly connected set TS ⊆ T in G that satisfies all the conditions in Prop. 4.
We will now show that τ := {τB | ∃CB ∈ CS . (CB , τB) ∈ TS} is a part of a trace
manifold:

1. Note that, by the definition of TS , we know that for every Bi ∈ BS , there is
a τBi ∈ τ such that τBi is a trace of CBi .

2. Let Bi, Bj ∈ BS and suppose that Bj ≤SG Bi. By (2) in the definition of
the trace manifold graph, we get that ∃τBj

, τBi
. (CBj

, τBj
), (CBi

, τBi
) ∈ TS

and that ((CBj
, τBj

), (CBi
, τBi

)) ∈ Eτ . By the definition of Eτ we get that
τi(R(Bj)) = τj(R(Bj)).

3. By (3) in the definition of the trace manifold graph we get that ∃τBi

∃CBi
. (CBi

, τBi
) ∈ TS , that τBi

has a progress point and also that τBi

is a trace of Bi

The nodes of a trace manifold graph can be generated using the following
notion of the positions graph.

Definition 10 (Positions graph). Let SG = (V,E, Ps, (R(v,v′))(v,v′)∈E) be a
sloped graph. The positions graph of SG is the directed graph SGpos = (V ′, E′),
with a distinguished subset of progressing edges Prog ⊆ E′, defined by:

V ′ = {(v, p) | v ∈ V, p ∈ Ps(v)}
E′ = {((v, p), (u, q)) | v, u ∈ V, ∃s. (p, q, s) ∈ Rv,u}

Prog = {((v, p), (u, q)) | v, u ∈ V, (p, q, ) ∈ Rv,u}

The nodes of the trace manifold graph can be computed via a DFS on the
positions graph to find the traces of each basic cycle, and the edges by checking
which traces of two ≤SG-related cycles agree on the traced element of the source
bud’s companion.

We can thus formulate an algorithm for deciding the trace manifold criterion
by generating the trace manifold graph and traversing it to check the requirements
in Prop. 4. Specifically Algo. 4, which takes a sloped graph SG that is a tree
with backlinks (the root node and its set of buds thus being part of the input),
performs exactly this check and thus returns a “yes” if the graph has a trace
manifold (in which case it satisfies Infinite Descent, by Prop. 1) or a “don’t know”
otherwise.

– First, the algorithm checks whether the input graph is in cycle normal form
also calculating, if so, the structural connectivity relation ≤SG and each bud’s
basic cycle and companion.
• The companions can be found using a DFS which starts from the root
of the sloped graph: when the DFS gets to a bud, it recognizes its only
neighbour as its companion.

• If the out-edge of the bud is node previously encountered in the DFS, then
the basic cycle of the bud is recognized as the path from its companion
to itself. Otherwise, the companion is not an ancestor of the bud, which
means that the sloped graph is not in cycle normal form. If this is the
case, the algorithm immediately returns a “don’t know”.
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Algorithm 4 Infinite Descent by the Trace Manifold Criterion

Input: Sloped Graph SG = (V,E, Ps,R), a buds set Bud
Output: “yes” if SG has a trace manifold, “don’t know” otherwise
1: ≤SG, basicCyc, companions, isCNF ← getStrCon(SG,Bud) .
O(|V |+ |E|+ |Bud|2)

2: if ¬isCNF then
3: return “don’t know”
4: T , progTraces← getTracesAllCycles(SG, basicCyc) . O(|V ||Ps||V |)
5: E ← getTMGraphEdges(SG, T ,≤SG, companions) . O(|Bud|2|Ps||V |)
6: WCSs← getWeaklyConnectedSets(≤SG) . O(|Bud|2 · 2|Bud|)
7: for all WCS ∈WCSs do . 2|Bud| iterations
8: if ¬hasSubmanifold(WCS, E , progTraces,≤SG) then .
O(|V ||Ps||V | + |Bud|2|Ps||V |)

9: return “don’t know”
10: return “yes”

• The ≤SG relation is then calculated by going over every two basic cycles
and their companions and checking whether the companion of one cycle
is a part of the other basic cycle.

– If the graph is in cycle normal form, the algorithm generates the trace
manifold graph using the positions graph, as described above.

– Then, the algorithm finds all of the weakly ≤SG-connected sets, and for
every such set, it checks if it has a submanifold. A submanifold of a set of
basic cycles BS is a set of traces for each basic cycle in BS that satisfies
the three requirements of the trace manifold, just without the “for all S”
quantification. Finding a submanifold amounts to choosing a basic cycle in
the current weakly ≤SG-connected set, running an un-directed DFS on the
trace manifold graph from every trace of this basic cycle, and checking if the
following hold:
1. the DFS traverses all of the basic cycles in the current set;
2. every two ≤SG-connected basic cycles have an edge traversed by the

DFS;
3. the DFS encountered at least one progressing trace.
If such a DFS exists, then by Prop. 4 it is easy to see that the nodes of the
trace manifold graph that it visited form a submanifold.

– If for every weakly ≤SG-connected component there exists such a DFS, then
all of those DFS’s form a trace manifold, and thus, in that case, the algorithm
would return a “yes”. Otherwise it returns a “don’t know”, as the absence
of a trace manifold does not imply that the graph does not satisfy Infinite
Descent.

Complexity. In terms of complexity, note that a trace manifold has a trace for
every pair (BS , i) such that BS is a subset of weakly ≤SG-connected buds and
Bi ∈ BS . This means that in the worst case, the trace manifold has a size that is
exponential in the number of buds (if they are all weakly ≤SG-connected). In
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addition, for each such subset, we would need to go over all of the traces inside
each basic cycle, which, again, in the worst case would be exponential, this time
in the amount of nodes in each cycle. That would be the case when every position
of every node in the basic cycle is connected to every position of the next node
in the cycle, which would make O(|Ps||c|) when |c| is the number of nodes in
the cycle. While this gives an upper bound on the size of the trace manifold,
we are also interested in an upper bound on the runtime of finding such a trace
manifold.

The overall runtime complexity of the algorithm is:

O(|E|+ 2|Bud|(|V ||Ps||V | + |Bud|2|Ps||V |))

Line 1 uses a DFS on the nodes graph and also checks if each pair of basic
cycles are ≤SG-connected, which takes O(|V | + |E| + |Bud|2). Line 4 simply
explores all positions paths along each basic cycle, which, for every cycle C, takes
O(|Ps||C|). In the worst case, in which the graph is a string of companions with
buds as leaves along the string, and the sizes of the basic cycles are 1, 2, ..., |V |,
we get that Line 4 takes

∑
i∈[1..|V |] |Ps|i = O(|V ||Ps||V |) for all cycles together.

This also means that in the worst case, the trace manifold graph has at most
|V ||Ps||V | nodes (|T | = O(|V ||Ps||V |)). In Line 5 the algorithm goes over every
two ≤SG-connected basic cycles and over every pair of their traces. In the worst
case, a basic cycle of length |C| has |Ps||C| traces if every position of one node in
the cycle is connected to every position of the next node in the cycle. Note that,
since ≤SG is a binary relation over Bud, we have that | ≤SG | = O(|Bud|2). This
means that Line 5 takes:

∑
(Bi,Bj)∈≤SG

O(|Ps||Ci||Ps||Cj |) =

∑
(Bi,Bj)∈≤SG

O(|Ps||V ||Ps||V |) =

O(| ≤SG ||Ps||V |) = O(|Bud|2|Ps||V |)

This also means that in the worst case, the trace manifold graph has at most | ≤SG
||Ps||V | edges (|E| = O(| ≤SG ||Ps||V |) = O(|Bud|2 · |Ps||V |)). Then in Line 6 we
get the weakly ≤SG-connected sets by going over every subset of Bud and using a
DFS on that subset, which takesO(| ≤SG |2|Bud|) = O(|Bud|2·2|Bud|). Line 8 runs
an undirected DFS from every trace of some set basic cycle in the current weakly
≤SG-connected set, which takes O(|T |+ |E|) = O(|V ||Ps||V | + |Bud|2 · |Ps||V |).
In addition, Line 8 checks if the weakly ≤SG-connected set has an edge between
any two ≤SG-connected basic cycles, which takes O(| ≤SG |) if E is stored as a
hash map. Finally Line 8 checks if the DFS traversed a progressing trace, which
takes O(1) per trace traversed in the DFS, which in the worst case is the amount
of traces of the current weakly ≤SG-connected set, which is O(|T |). All together,
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Line 8 takes

O(|T |+ |E|+ | ≤SG |+ |T |) =
O(|T |+ |E|+ | ≤SG |) =
O(|V ||Ps||V | + |Bud|2 · |Ps||V | + |Bud|2) =
O(|V ||Ps||V | + |Bud|2 · |Ps||V |)

Since there are O(2|Bud|) iterations running Line 8, we get that the loop in Line 7
takes O(2|Bud|(|V ||Ps||V | + |Bud|2|Ps||V |)).
Looking at the whole algorithm, it takes:

O(|V |+ |E|+ |Bud|2 + |V ||Ps||V | + |Bud|2|Ps||V |+
|Bud|2 · 2|Bud| + 2|Bud|(|V ||Ps||V | + |Bud|2|Ps||V |)) =
O(|V ||Ps||V | + |E|+ |Bud|2|Ps||V | + 2|Bud|(|Bud|2 + |V ||Ps||V | + |Bud|2|Ps||V |)) =
O(|E|+ 2|Bud|(|V ||Ps||V | + |Bud|2|Ps||V |))

Note that if the graph is not in cycle normal form Algo. 4 returns early after
only O(|V |+ |E|+ |Bud|2).

Practical Runtime Evaluation. Fig. 12 plots the average runtime of Algo. 4
on graphs in cycle normal form, grouped by the number of buds, the number
of nodes and edges in the sloped graph and by its width. In Fig. 12a we can
see that our database does not contain sloped graphs in cycle normal form with
many buds, only at most 5, so a trend in |Bud| is difficult to see experimentally.
We can see a rising trend in the runtime by every parameter, but it is difficult
to see how the runtime complexity is reflected in the figures. That is because
the runtime complexity is tight when viewed in terms of |T |, |E| and | ≤SG |, as
the trace manifold graph and the structural connectivity relation are the data
structures that the algorithm traverses and not the sloped graph.

When analysed through this lens, the runtime complexity of the algorithm is
O(2|Bud|(| ≤SG |+ |T |+ |E|)), and Fig. 13 plots the runtime of the algorithm
by these parameters. We can see a somewhat linear trend in Fig. 13a, Fig. 13b
and Fig. 13c which reflects the linearity in | ≤SG |, |T | and |E| in the runtime
complexity analysis.

Fig. 14 presents the runtime of Algo. 4 only on graphs not in cycle normal form.
On these graphs, our runtime complexity analysis presents a linear complexity in
both |V | and |E|, which is reflected in Fig. 14a and Fig. 14b respectively. Again,
our database does not contain sloped graphs with many buds, only at most 16
in graphs not in cycle normal form, so again, it is difficult to see a trend in the
runtime by |Bud|.

A.2 Proofs for the Flat Cycles Criterion

Proposition 2 (Flat Cycles criterion (FC)). Let SG be a sloped graph. If
SG has a cycle then SG does not satisfy Infinite Descent.
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(a) Runtime by |Bud| (b) Runtime by |E|

(c) Runtime by |V | (d) Runtime by |Ps|

Fig. 12: Trace Manifold Runtime on Graphs in CNF

Proof. Let v1, ..., vn be a cycle in SG . Then, let (pi)i∈N be a trace for the infinite
path (vi)i∈N := (v1, ..., vn)

ω. By the construction of SG , this infinite path is
also an infinite path in SG and ∀i ∈ N we have that (pi, pi+1,

 ) /∈ Rvi,vi+1
,

which means that the trace (pi)i∈N is not decreasing. This is true for all traces
along the infinite path ((vi)i∈N)

ω and thus it is not descending. Hence, the sloped
graph SG has an infinite path that is not descending, which means it does not
satisfy Infinite Descent.

A.3 Proofs for the Descending Unicycles Criterion

Proposition 3 (Descending Unicycles criterion (DU)). If SG is a uni-
cycles sloped graph, then SG satisfies Infinite Descent iff it is simply descending.

Proof. (⇒) Let SG be a unicycles sloped graph which satisfies Infinite Descent
and let c be a cycle in SG. Observe the infinite path π := cω. Because SG
satisfies Infinite Descent we get that there is a decreasing trace τ for π. Denote
πPs := ((πi, τi))i∈N and note that it is a path in SGposc . Because πPs is infinite,
we get that it has a cycle at its limit, which we denote as cPs. Also, because τ is
descending, we get that there is a progressing edge ((v, p), (u, q)) in cPs. Note
that while cPs is not necessarily a basic cycle, every edge in cPs is contained
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(a) Runtime by | ≤P | (b) Runtime by |T | (c) Runtime by |E|

Fig. 13: Trace Manifold Runtime on Graphs in CNF

(a) Runtime by Nodes (b) Runtime by Edges (c) Runtime by Buds

Fig. 14: Trace Manifold Runtime on Graphs Not in CNF

in some basic cycle in SGposc . Thus, there is some basic cycle in SGposc which
contains the aforementioned progressing edge, which means that c is a descending
cycle. This holds for all cycles in SG, which makes it a simply descending graph.
(⇐) Let SG be a simply descending unicycles sloped graph and let π = v0, v1, ...
be an infinite path in SG. Note that because SG is a unicycles graph, π has a
single basic cycle c at its limit, as otherwise, there would be a path between two
basic cycles and back in SG, which would make it not a unicycles graph. Because
SG is a simply descending graph, SGposc has a basic cycle cPs which has at least
one progressing edge. Now, denote τc as the right component of each node in the
path (cPs)ω. Note that, by the definition of SGposc , we get that τc is a trace for
the infinite path cω. Note, also, that τc is decreasing, since cPs has at least one
progressing edge. Thus, we get that τc is a decreasing trace for the infinite path
cω, which is a tail of the infinite path π, which means that π is a descending
infinite path. This holds for all infinite paths in SG, hence SG satisfies Infinite
Descent.
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