
Logical Methods in Computer Science
Volume 20, Issue 2, 2024, pp. 18:1–18:27
https://lmcs.episciences.org/

Submitted Jul. 28, 2023
Published Jun. 26, 2024

TT□
C : A FAMILY OF EXTENSIONAL TYPE THEORIES WITH

EFFECTFUL REALIZERS OF CONTINUITY

LIRON COHEN a AND VINCENT RAHLI b

a Ben-Gurion University, Israel
e-mail address: cliron@cs.bgu.ac.il

b University of Birmingham, UK
e-mail address: V.Rahli@bham.ac.uk

Abstract. TT□
C is a generic family of effectful, extensional type theories with a forcing

interpretation parameterized by modalities. This paper identifies a subclass of TT□
C

theories that internally realizes continuity principles through stateful computations, such
as reference cells. The principle of continuity is a seminal property that holds for a number
of intuitionistic theories such as System T. Roughly speaking, it states that functions on
real numbers only need approximations of these numbers to compute. Generally, continuity
principles have been justified using semantical arguments, but it is known that the modulus
of continuity of functions can be computed using effectful computations such as exceptions
or reference cells. In this paper, the modulus of continuity of the functionals on the Baire
space is directly computed using the stateful computations enabled internally in the theory.

1. Introduction

The framework TT□
C [CR22] is a generic family of effectful, extensional type theories with

a forcing interpretation parameterized by modalities. More concretely, TT□
C uses a general

possible-worlds forcing interpretation parameterized by an abstract modality □, which, in
turn, can be instantiated with simple covering relations, leading to a general sheaf model. In
addition, TT□

C is parameterized by a type of time-progressing choice operators C, enabling
support for internal effectful computations. TT□

C is particularly suitable for studying effectful
theories, and indeed, TT□

C was called an “unprejudiced” type theory since these parameters
can be instantiated to obtain theories that are either “agnostic”, i.e., compatible with classical
reasoning (in the sense that classical axioms, such as the Law of Excluded Middle, can be
validated), or that are “intuitionistic”, i.e., incompatible with classical reasoning (in the sense
that classical axioms can be proven false).

This paper uses the TT□
C framework to reason about the continuity principle which is

a seminal property in intuitionistic theories which contradicts classical mathematics but is

Key words and phrases: Continuity, Stateful computations, Intuitionism, Extensional Type Theory,
Constructive Type Theory, Realizability, Theorem proving, Agda .

This research was partially supported by Grant No. 2020145 from the United States-Israel Binational
Science Foundation (BSF).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(2:18)2024
© L. Cohen and V. Rahli
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-6608-3000
https://orcid.org/0000-0002-5914-8224
http://creativecommons.org/about/licenses

18:2 L. Cohen and V. Rahli Vol. 20:2

generally accepted by constructivists. Roughly speaking, the principle states that functions on
real numbers only need approximations of these numbers to compute. Brouwer, in particular,
assumed his so-called continuity principle for numbers to derive that all real-valued functions
on the unit interval are uniformly continuous [KV65, Dum00, Bee85, BR87, TvD88]. The
continuity principle for numbers, sometimes referred to as the weak continuity principle,
states that all functions on the Baire space (i.e., B :≡ Nat → Nat, the set of infinite sequences
of numbers) have a modulus of continuity. More concretely, given a function F of type
B → Nat and a function α of type B, the principle states that F (α) can only depend on an
initial segment of α, and the length of the smallest such segment is the modulus of continuity
of F at α. This is standardly formalized as follows, where Bn :≡ {x : Nat | x < n} → Nat is
the set of finite sequences of numbers of length n:

WCP = ΠF :B → Nat.Πα:B.∥Σn:Nat.Πβ:B.(α=β∈Bn) → (F (α)=F (β)∈Nat)∥

A number of theories have been shown to satisfy Brouwer’s continuity principle, or
uniform variants, such as N-HAω by Troelstra [Tro73, p.158], MLTT by Coquand and
Jaber [CJ10, CJ12], System T by Escardó [Esc13b], CTT by Rahli and Bickford [RB16],
BTT by Baillon, Mahboubi and Pedrot [BMP22], to cite only a few (see Sec. 5 for further
details). These proofs often rely on a semantical forcing-based approach [CJ10, CJ12], where
the forcing conditions capture the amount of information needed when applying a function
to a sequence in the Baire space, or through suitable models that internalize (C-Spaces
in [XE13]) or exhibit continuous behavior (e.g., dialogue trees in [Esc13b, BMP22]).

Not only can functions on the Baire space be proved to be continuous, but using effectful
computations, as for example described in [Lon99], one can compute the modulus of continuity
of such a function. However, as shown for example by Kreisel [Kre62, p.154], Troelstra [Tro77b,
Thm.IIA], and Escardó and Xu [EX15, Xu15], continuity is not an extensional property in the
sense that two equal functions might have different moduli of continuity. Therefore, to realize
continuity, the existence of a modulus of continuity has to be truncated as explained, e.g.,
in [EX15, Xu15, RB16, RB17], which is what the ∥_∥ operator achieves in WCP. Following the
effectful approach, continuity was shown to be realizable in [RB16, RB17] using exceptions.

Instead of using exceptions, a more straightforward way to compute the modulus of
continuity of a function on the Baire space is to use reference cells. This was explained,
e.g., in [Lon99], where the use of references can be seen as the programming counterparts of
the more logical forcing conditions. The computation using references is more efficient than
when using exceptions as it allows computing the modulus of continuity of a function F at a
point α simply by executing F on α, while recording the highest argument that α is applied
to, while using exceptions requires repeatedly searching for the modulus of continuity.

Following this line of work, in this paper we show how to use stateful computations to
realize a continuity principle. This allows deriving constructive type theories that include
continuity axioms where the modulus of continuity is internalized in the sense that it is
computed by an expression of the underlying programming language. Concretely, we do so
for TT□

C , which is presented in more details in Sec. 2. More precisely, we prove in this paper
that all TT□

C functions are continuous for some instances of □ and C: namely for “non-empty”
equality modalities, and reference-like stateful choice operators. Our proof is for a variant of
the weak continuity principle (see Thm. 4.1), which we show to be inhabited by a program
that relies on a choice operator to keep track of the modulus of continuity of a given function,
following Longley’s method [Lon99]. This variant is restricted to “pure” (i.e., without side
effects) functions F , α, and β, and Sec. 4.1 discusses issues arising with impure functions.

Vol. 20:2 TT□
C : A FAMILY OF EFFECTFUL, EXTENSIONAL TYPE THEORIES 18:3

Roadmap. After presenting in Sec. 2 the main aspects of TT□
C that are relevant to the results

presented in this paper, Sec. 4 validates a continuity principle using stateful computations.
One key contribution of this paper, discussed in Sec. 2, is the fact that TT□

C allows computa-
tions to modify the current world, which is accounted for in its forcing interpretation. Some
consequences of this fact are further discussed in Sec. 3. Another key contribution, discussed
in Sec. 4, is the internalization of the modulus of continuity of functions, in the sense that it
can be computed by a TT□

C expression and used to validate the continuity principle. Finally,
Sec. 5 concludes and discusses the related work on continuity.

2. TT□
C : Syntax & Semantics

This section presents TT□
C , a family of type theories introduced in [CR22], which is param-

eterized by a choice operator C, and a metatheoretical modality □, which allows typing
the choice operator. The choice operators are time-progressing elements that we will in
particular instantiate with references. Sec. 2 carves out a sub-family for which we can validate
computationally relevant continuity rules as shown in Sec. 4.

The version presented here extends the one introduced in [CR22] in particular with the
following components, which are formally defined next.
• An operator that allows making a choice (t1 := t2). Computations are performed against

worlds (see Sec. 2.2), and [CR22] already provided computations to “read” choices from a
world. However, even though [CR22] included metatheoretical computations to update a
world in the form of the mutability requirement presented in Def. 2.7, it did not include
corresponding object computations. Doing so has far-reaching consequences. We generalize
TT□

C ’s semantics accordingly, in effect internalizing the mutability requirement.
• An operator to generate a “fresh” choice name (νx.t). While the version of TT□

C presented
in [CR22] provided metatheoretical computations to generate new choice names in the form
of the extendability requirement presented in Def. 2.5, it did not provide corresponding
object computations. We remedy this here by extending TT□

C with a corresponding
computation, which internalizes the extendability requirement.

• A type that states the “purity” of an expression, i.e., that the expression has no side effects.
This will allow us to formalize the variant of the continuity principle we validate. Sec. 4.1
provides further details.

Moreover, the version presented here differs from the one presented in [CR23] as follows:
• Sec. 2 contains further details regarding TT□

C , such as examples illustrating how effectful
programs behave and are given meaning through TT□

C types, as well as a discussion of
TT□

C ’s inference rules.
• The way TT□

C captures effects is simpler and more uniform. The type theory is more
uniform in the sense that types are now impure by default and TT□

C provides modalities
to capture different levels of purity, as opposed to [CR23] where types were what is
characterized as “write-only” in Sec. 2.5, and the theory provided modalities to both make
types more pure and more impure (through a complex “time truncation” type operator).
Furthermore, the semantics of these new modalities (see Sec. 2.4) is simpler compared to
the semantics of the “time truncation” operator used in [CR23], which was used to turn a
“write-only” type into a “read & write” type (see Sec. 2.5).

• Sec. 3 discusses how extending TT□
C with computations to update the current world impacts

validity results presented in [CR22] of standard axioms such as Markov’s Principle.

18:4 L. Cohen and V. Rahli Vol. 20:2

2.1. Metatheory. Our metatheory is Agda’s type theory [AGD]. The results presented
in this paper have been formalized in Agda, and the formalization is available here: https:
//github.com/vrahli/opentt/blob/lmcs24. We will use the symbol Ó to link to the corresponding
definition or result in the formalization. We use ∀,∃,∧,∨,→,¬ in place of Agda’s logical
connectives in this paper. Agda provides an hierarchy of types annotated with universe
labels which we omit for simplicity. Following Agda’s terminology, we refer to an Agda type
as a set, and reserve the term type for TT□

C ’s types. We use P as the type of sets that denote
propositions; N for the set of natural numbers; and B for the set of Booleans true and false.
Induction-recursion is used to define the forcing interpretation in Sec. 2.4. We do not discuss
this further here and the interested reader is referred to the Agda formalization of this forcing
interpretation (Ó) for further details.

2.2. Worlds. To capture the time progression notion which underlines choice operators,
TT□

C is parameterized by a Kripke frame [Kri63, Kri65] defined as follows:

Definition 2.1 (Ó Kripke Frame). A Kripke frame consists of a set of worlds W equipped
with a reflexive and transitive binary relation ⊑.

Let w range over W . We sometimes write w ′ ⊒ w for w ⊑ w ′. Let Pw be the collection of
predicates on world extensions, i.e., functions in ∀w ′ ⊒ w .P. Note that due to ⊑’s transitivity,
if P ∈ Pw then for every w ′ ⊒ w it naturally extends to a predicate in Pw ′ . We further define
the following notations for quantifiers. ∀⊑w (P) states that P ∈ Pw is true for all extensions of
w , i.e., P w ′ holds in all worlds w ′ ⊒ w . ∃⊑w (P) states that P ∈ Pw is true at an extension
of w , i.e., P w ′ holds for some world w ′ ⊒ w . For readability, we sometime write ∀⊑w (w ′.P)
instead of ∀⊑w (λw ′.P) and ∃⊑w (w ′.P) instead of ∃⊑w (λw ′.P).

2.3. TT□
C ’s Syntax and Operational Semantics. Fig. 1 presents TT□

C ’s syntax and call-
by-name operational semantics, where the blue boxes highlight the time-related components,
and where x belongs to a set of variables Var. For simplicity, numbers are considered to be
primitive. The constant ⋆ is there for convenience, and is used in place of a term, when the
particular term used is irrelevant. The term let x = t1 in t2 is a call-by-value operator that
allows evaluating t1 to a value before proceeding with t2. Terms are evaluated according
to the operational semantics presented in Fig. 1’s lower part, which is further discussed
below. In what follows, we use all letters as metavariables for terms. Let t[x\u] stand for the
capture-avoiding substitution of all the free occurrences of x in t by u. In what follows, we
use the following definitions, where x does not occur free in t2 or t3:

if t1 then t2 else t3 :≡ case t1 of inl(x) ⇒ t2 | inr(x) ⇒ t3

t1;t2 :≡ let x = t1 in t2
tt :≡ inl(⋆)

ff :≡ inr(⋆)

neg(t) :≡ if t then ff else tt

iszero(t) :≡ natrec(t, tt, λm.λr.ff)

pred(t) :≡ natrec(t, 0, λm.λr.m)

t1 − t2 :≡ natrec(t2, t1, λm.λr.pred(r))

t1 < t2 :≡ neg(iszero(t2 − t1))

Types are syntactic forms that are given semantics in Sec. 2.4 via a forcing interpretation.
The type system contains standard types such as dependent products of the form Πx:t1.t2
and dependent sums of the form Σx:t1.t2. It also includes subsingleton types of the form ∥t∥,
which turns a type t into a subsingleton type that equates all elements of t; and intersection

https://github.com/vrahli/opentt/blob/lmcs24
https://github.com/vrahli/opentt/blob/lmcs24
https://github.com/vrahli/opentt/blob/lmcs24/forcing.lagda
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L98

Vol. 20:2 TT□
C : A FAMILY OF EFFECTFUL, EXTENSIONAL TYPE THEORIES 18:5

Figure 1 Core syntax (above) and small-step operational semantics (below)

v ∈ Value ::= vt (type) | λx .t (lambda) | ⋆ (constant)
| n (number) | inl(t) (left injection) | δ (choice name)
| ⟨t1, t2⟩ (pair) | inr(t) (right injection)

vt ∈ Type ::= Πx:t1.t2 (product) | {x : t1 | t2} (set) | t1+t2 (disjoint union)
| Σx:t1.t2 (sum) | t1=t2∈t (equality) | NoRead (no read)
| Ui (universe) | Nat (numbers) | NoWrite (no write)
| t1 ∩ t2 (intersection) | ∥t∥ (sub-singleton) | Pure (pure)

t ∈ Term ::= x (variable) | v (value) | ! t (read)
| t1 t2 (application) | fix(t) (fixpoint) | t1 := t2 (choose)
| let x = t1 in t2 (eager) | succ(t) (successor) | νx.t (fresh)
| natrec(t1 , t2, t3) (number recursor)
| let x , y = t1 in t2 (pair destructor)
| case t of inl(x) ⇒ t1 | inr(y) ⇒ t2 (injection destructor)

(λx .t) u 7→w
w t [x\u]

fix(v) 7→w
w v fix(v)

let x = v in t2 7→w
w t2[x\v]

succ(n) 7→w
w 1 + n

natrec(0, t1, t2) 7→w
w t1

natrec(1 + n, t1, t2) 7→w
w t2 n natrec(n, t1, t2)

let x , y = ⟨t1, t2⟩ in t 7→w
w t [x\t1; y\t2]

case inl(t) of inl(x) ⇒ t1 | inr(y) ⇒ t2 7→w
w t1[x\t]

case inr(t) of inl(x) ⇒ t1 | inr(y) ⇒ t2 7→w
w t2[y\t]

!δ 7→w
w read(w , δ)

δ := t 7→w
write(w ,δ,t) ⋆

νx.t 7→w
startνC(w ,r) t[x\νC(w)]

types of the form t1 ∩ t2, which is inhabited by the inhabitants of both t1 and t2. For
convenience we introduce the following definitions, where x does not occur free in t2:

Void :≡ 0=1∈Nat
Unit :≡ 0=0∈Nat
Bool :≡ Unit+Unit

t1 → t2 :≡ Πx:t1.t2
¬T :≡ T → Void

↑T :≡ T=tt∈Bool
↓T :≡ {x : Unit | T}

Fig. 1’s lower part presents TT□
C ’s small-step operational semantics, where t1 7→w1

w2
t2

expresses that t1 reduces to t2 in one step of computation starting from the world w1 and
possibly updating it so that the resulting world is w2 at the end of the computation step.
Most computations do not modify the current world except t1 := t2. We omit the congruence
rules that allow computing within terms such as: if t1 7→w1

w2
t2 then t1(u) 7→w1

w2
t2(u), and the

boxed terms of the form t in Fig. 1 indicate the arguments that have to be reduced before
the outer operators can be reduced. We denote by Z⇒ the reflexive transitive closure of 7→,
i.e., a Z⇒w1

w2
b states that a computes to b in 0 or more steps, starting from the world w1 and

updating it so that the resulting world is w2 at the end of the computation. We write a Z⇒w b
for ∃⊑w (w ′.a Z⇒w

w ′ b). We also write a ⇛w b if a computes to b in all extensions of w , i.e., if
∀⊑w (w ′.a Z⇒w ′ b).

TT□
C includes time-progressing notions that rely on worlds to record choices and provides

operators to manipulate the choices stored in a world, which we now recall. Choices are
referred to through their names. A concrete example of such choices are reference cells in
programming languages, where a variable name pointing to a reference cell is the name of
the corresponding reference cell. To this end, TT□

C ’s computation system is parameterized
by a set N of choice names, that is equipped with a decidable equality, and an operator that

18:6 L. Cohen and V. Rahli Vol. 20:2

given a list of names, returns a name not in the list. This can be given by, e.g., nominal
sets [Pit13]. In what follows we let δ range over N , and take N to be N for simplicity. TT□

C
is further parameterized over abstract operators and properties recalled in Defs. 2.2, 2.4, 2.5
and 2.7, which we show how to instantiate in Ex. 2.8. Definitions such as Def. 2.2 provide
axiomatizations of operators, and in addition informally indicate their intended use. Choices
are defined abstractly as follows:

Definition 2.2 (Ó Choices). Let C ⊆ Term be a set of choices,1 and let c range over C.
We say that a computation system contains ⟨N , C⟩-choices if there exists a partial function
read ∈ W → N → C (Ó). Given w ∈ W and δ ∈ N , the returned choice, if it exists, is meant
to be the last choice made for δ according to w . C is said to be non-trivial if it contains two
values κ0 and κ1, which are syntactically different (Ó).

A choice name δ can be used in a computation to access (or “read”) choices from a
world as follows: !δ 7→w

w read(w , δ) (as shown in Fig. 1). This allows getting the last δ-choice
from the current world w . Datatypes are by default inhabited by impure computations that
can for example read choices using !t. For example, the Nat type is the type of potentially
impure natural numbers that includes expressions of the form !δ, when δ’s choices are natural
numbers, in addition to expressions of the form 0, 1, etc.

Note that the above definition of read is a slight simplification of the more general notion
of choices presented in [CR22]. There, the read function was of type W → N → N → C. The
additional N component enables a more general notion of choice operators, encompassing
both references and choice sequences [KV65, vAvD02, Tro85, Tro77a, KT70, Vel01, Mos93],
which stem from Brouwer’s intuitionistic logic, and can be seen as reference cells that record
the history of all the values ever stored in the cells. In references, which is the notion of
choices we especially focus on in this paper, one only maintains the latest update and so the
N component becomes moot. Thus, for simplicity of presentation, we elide the N component
in this paper, but full details are available in the Agda implementation.

The NoRead type is inhabited by expressions that when computing to a value in a world
w1, also compute to that value in all extensions w2 of w1. Intuitively, this captures expressions
that “do not read” in the sense that they can only make limited use of the ! operator as the
values they return should be the same irrespective of the world they start computing against.
For example, given a choice name δ, whose choices are natural numbers, !δ does not inhabit
NoRead as it could return different values in successive extensions, while let x = !δ in 0
inhabits NoRead as it always compute to 0, even though it reads δ. The NoRead type can be
turned into a |_|r modality as follows: let |T |r :≡ T ∩ NoRead. We then obtain that !δ is not
a member of |Nat|r, while it is a member of Nat, and let x = !δ in 0 is a member of both
Nat and |Nat|r. More generally, |T |r is a subtype of T in the sense that the inhabitants of
|T |r also inhabit T .

While |T |r restricts the effects that T ’s inhabitants can have, it can still be inhabited
by effectful computations (we saw that let x = !δ in 0 inhabits |Nat|r). Therefore, to
capture pure expressions, TT□

C provides the term Pure, which is the type of “pure” terms,
i.e. terms that do no contain choice names. This type can be turned into a modality as
follows: |T |c :≡ T ∩ Pure. Therefore, |Nat|c is the type of pure natural numbers, i.e., natural
numbers that do not contain choice names. Hence, |Nat|c is a subtype of |Nat|r. For example,
let x = !δ in 0 inhabits |Nat|r, while it does not inhabit |Nat|c.

1To guarantee that C ⊆ Term, one can for example extend the syntax to include a designated constructor
for choices, or require a coercion C → Term. We opted for the latter in our formalization.

https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L101
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L104
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L107

Vol. 20:2 TT□
C : A FAMILY OF EFFECTFUL, EXTENSIONAL TYPE THEORIES 18:7

TT□
C also includes the notion of a restriction, which allows assuming that the choices

made for a given choice name all satisfy a pre-defined constraint. Here again we simplify the
concept for choices without history tracking.

Definition 2.3 (Ó Restrictions). A restriction r ∈ Res is a pair ⟨res, d⟩ consisting of a
function res ∈ C → P and a default choice d ∈ C such that (res d) holds. Given such a pair
r , we write r·d for d .

Intuitively, res specifies a restriction on the choices that can be made at any point in
time and d provides a default choice that meets this restriction (e.g., for reference cells, this
default choice is used to initialize a cell). For example, the restriction ⟨λc.c ∈ N, 0⟩ requires
choices to be numbers and provides 0 as a default value. To reason about restrictions, we
require the existence of a “compatibility” predicate as follows.

Definition 2.4 (Ó Compatibility). We say that C is compatible if there exists a predicate
comp ∈ N → W → Res → P, intended to guarantee that restrictions are satisfied, and which
is preserved by ⊑: ∀(δ : N)(w1,w2 : W)(r : Res).w1 ⊑ w2 → comp(δ,w1, r) → comp(δ,w2, r).

TT□
C further requires the ability to create new choice names as follows.

Definition 2.5 (Ó Extendability). We say that C is extendable if there exists a function
νC ∈ W → N (Ó), where νC(w) is intended to return a new choice name not present in w ,
and a function startνC ∈ W → Res → W (Ó), where startνC(w , r) is intended to return an
extension of w with the new choice name νC(w) with restriction r , satisfying the following
properties:
• Starting a new choice extends the current world: ∀(w : W)(r : Res).w ⊑ startνC(w , r)
• Initially, the only possible choice is the default value of the given restriction, i.e.:
∀(r : Res)(w : W)(c : C).read(startνC(w , r), νC(w)) = c → c = r·d

• A choice is initially compatible with its restriction:
∀(w : W)(r : Res).comp(νC(w), startνC(w , r), r)

TT□
C provides a corresponding object computation that internalizes the metatheoretical

νC function, namely νx.t. Intuitively, it selects a “fresh” choice name δ and instantiate
the variable x with δ. Formally, it computes as follows: νx.t 7→w

startνC(w ,r) t[x\νC(w)] (as
presented in Fig. 1). here r is the restriction ⟨λc.(c ∈ N), 0⟩, which constrains the choices
to be numbers, with default value 0. Other restrictions could be supported, for example
by adding different ν symbols to the language and by selecting during computation the
appropriate restriction based on the ν operator at hand. This is however left for future work
as we especially focus here on the choices presented in Ex. 2.8, i.e., natural numbers.

Remark 2.6 (Freshness). The fresh operator used in [RB16] computes νx.a by reducing
a to b, and then returning νx.b, thereby never generating new fresh names. As opposed
to that fresh operator, which was based on nominal sets, the one introduced in this paper
cannot put back the “fresh” constructor at each step of the small step derivation, otherwise a
multi-step computation would not be able to use a choice name to keep track of the modulus
of continuity of a function across multiple computation steps by recording it in the current
world. One consequence of this is that this fresh operator cannot guarantee that it generates
a truly “fresh” name that does not occur anywhere else (therefore, it does not satisfy the
nominal axioms). For example (νx.x) δ might generate the name δ because it does not occur
in the local expression νx.x.

https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L110
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L113
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L116
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L119
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L122

18:8 L. Cohen and V. Rahli Vol. 20:2

Lastly, TT□
C requires the ability to update a choice as follows.

Definition 2.7 (Ó Mutability). We say that C is mutable if there exists a function write ∈
W → N → C → W such that if w ∈ W, δ ∈ N , c ∈ C, then w ⊑ write(w , δ, c).

TT□
C provides a corresponding object computation that internalizes the metatheoretical

write function, namely δ := t. Choosing a δ-choice t using δ := t results in a corresponding
update of the current world, namely write(w , δ, t). The computation returns ⋆, which is
reminiscent of reference updates in OCaml for example, which are of type unit. As mentioned
in Def. 2.2, we require C ⊆ Term so that choices can be included in computations. In addition,
because write ∈ W → N → C → W, for write(w , δ, t) to be well-defined for t ∈ Term, we
require a coercion from Term to C so that t can be turned into a choice, and write can be
applied to that choice. This coercion is left implicit for readability. We further require that
applying this coercion to a choice c returns c, which is used to validate the assumption Asm3

discussed in Sec. 4.2.
The type NoWrite is inhabited by expressions that when computing to a value from a

world w1 to a world w2, satisfy w2 = w1. Intuitively, this captures expressions that “do not
write” in the sense that they can only make limited use of the := operator as the resulting
world at the end of the computation should be the world the computation started in. For
example, given a choice name δ, whose choices are natural numbers, δ := (!δ + 1) does not
inhabit NoWrite as the computation ends in a world different from the initial world, where δ
is incremented by one, while let x = !δ in ((δ := (x+ 1));(δ := x)) inhabits NoWrite, even
though it uses :=, as it always ends in the same world as the initial world since δ is reset
to its initial value. The NoWrite type can be turned into a |_|w modality as follows: let
|T |w :≡ T ∩ NoWrite. We also write |T |rw for ||T |r|w. We then obtain that δ := (!δ+1) is not
a member of |Unit|w, while it is a member of Unit, and let x = !δ in (δ := (x+ 1));δ := x is
a member of both Unit and |Unit|w. More generally, both |T |w and |T |r are subtypes of T ,
and |T |c is a subtype of both |T |w and |T |r.

From this point on, we will only discuss choices C that are compatible, extendable and
mutable. While the abstract notion of choice operators has many concrete instances, this
paper focuses on one concrete instance, namely mutable references.

Example 2.8 (Ó References). Reference cells, which are values that allow a program to
indirectly access a particular object, are choice operators since they can point to different
objects over their lifetime. Formally, we define references to numbers, Ref, as follows:
Non-trivial Choices: Let N :≡ N and C :≡ N, which is non-trivial, e.g., take κ0 :≡ 0 and

κ1 :≡ 1.
Worlds: Worlds are lists of cells, where a cell is a quadruple of (1) a choice name, (2) a

restriction, (3) a choice, and (4) a Boolean indicating whether the cell is mutable. ⊑ is
the reflexive transitive closure of two operations that allow (i) creating a new reference
cell, and (ii) updating an existing reference cell. We define read(w , δ) so that it simply
accesses the content of the δ cell in w .

Compatible: comp(δ,w , r) states that a reference cell named δ with restriction r was created
in the world w (using an operation of type (i) described above), and that the current
value of the cell satisfies r .

Extendable: νC(w) returns a reference name not occurring in w ; and startνC(w , r) adds a
new reference cell to w with name νC(w) and restriction r (using an operation of type
(i) mentioned above).

https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L125
https://github.com/vrahli/opentt/blob/lmcs24/worldInstanceRef.lagda

Vol. 20:2 TT□
C : A FAMILY OF EFFECTFUL, EXTENSIONAL TYPE THEORIES 18:9

Mutable: write(w , δ, c) updates the reference δ with the choice c if δ occurs in w , and
otherwise returns w (using an operation of type (ii) mentioned above).

A coercion from Term to C can then turn n into n and all other terms to 0, which satisfies
the requirement that choices are mapped to the same choices.

Formally, a Z⇒w1
w2

b is the reflexive and transitive closure of 7→, i.e., it holds if a in world w1

computes to b in world w2 in 0 or more steps. Thanks to the properties of startνC presented
in Def. 2.5, and the properties of write in Def. 2.7, computations respect ⊑:

Lemma 2.9 (Ó Computations respect ⊑). If a Z⇒w1
w2

b then w1 ⊑ w2.

2.4. Forcing Interpretation. TT□
C ’s semantics, presented in Fig. 2, while similar to the

one presented in [CR22, CR23], differs in one major way, namely types are here impure by
default. It is interpreted via a forcing interpretation in which the forcing conditions are worlds.
This interpretation is defined using induction-recursion as follows: (1) the inductive relation
w ⊨ T1≡T2 expresses type equality in the world w ; (2) the recursive function w ⊨ t1≡t2∈T
expresses equality in a type. We further use the following abstractions:

w ⊨ type(T) :≡ w ⊨ T≡T

w ⊨ t∈T :≡ w ⊨ t≡t∈T

w ⊨ T :≡ ∃(t : Term).w ⊨ t∈T

a ⇛!w b :≡ ∀⊑w (w ′.a Z⇒w ′
w ′ b)

Famw (A1, A2, B1, B2) :≡
w ⊨ A1≡A2 ∧ ∀⊑w (w ′.∀(a1, a2 : Term).w ′ ⊨ a1≡a2∈A1 → w ′ ⊨ B1[x\a1]≡B2[x\a2])

Note that a ⇛!w b captures the fact that the computation does not change the initial world
(this is used in Thm. 2.12). Fig. 2 defines in particular the semantics of Pure, which is
inhabited by name-free terms, where namefree(t) is defined recursively over t and returns
false iff t contains a choice name δ or a fresh operator of the form νx.t. This forcing
interpretation is parameterized by a family of abstract modalities □, which we sometimes
refer to simply as a modality, which is a function that takes a world w to its modality
□w ∈ Pw → P. We often write □w (w

′.P) for □wλw
′.P . As in [CR22], to guarantee that this

interpretation yields a standard type system in the sense of Thm. 2.12, we require that the
modalities satisfy certain properties reminiscent of standard modal axiom schemata [CH96],
which we repeat here for ease of read:

Definition 2.10 (Ó Equality modality). The modality □ is called an equality modality if it
satisfies the following properties:
• □1 (monotonicity): ∀(w : W)(P : Pw).∀w ′ ⊒ w .□wP → □w ′P .
• □2 (distribution): ∀(w : W)(P,Q : Pw).□w (w

′.P w ′ → Q w ′) → □wP → □wQ
• □3 (density): ∀(w : W)(P : Pw).□w (w

′.□w ′P) → □wP
• □4 (weakening): ∀(w : W)(P : Pw).∀⊑w (P) → □wP
• □5 (reflexivity): ∀(w : W)(P : P).□w (w

′.P) → P

As mentioned in [CR22], modalities can be derived from covering relations ◁, where w ◁ o
captures that o ∈ W → P “covers” the world w . Covering relations are required to satisfy
suitable intersection, union, top, non-emptiness, and subset properties [CR22, Def.22] to be
able to derive modalities from them. We present below three examples of coverings that
satisfy these properties, namely Kripke, Beth, and Open coverings, from which modalities
can be derived (the result presented in Sec. 4 holds in particular for the resulting modalities):

https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L128
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L133

18:10 L. Cohen and V. Rahli Vol. 20:2

Figure 2 Forcing Interpretation
Numbers:
• w ⊨ Nat≡Nat ⇐⇒ True

• w ⊨ t≡t′∈Nat ⇐⇒ □w (w
′.∃(n : N).t Z⇒w ′ n ∧ t′ Z⇒w ′ n)

Products:
• w ⊨ Πx:A1.B1≡Πx:A2.B2 ⇐⇒ Famw (A1, A2, B1, B2)

• w ⊨ f≡g∈Πx:A.B ⇐⇒ □w (w
′.∀(a1, a2 : Term).w ′ ⊨ a1≡a2∈A → w ′ ⊨ f(a1)≡g(a2)∈B[x\a1])

Sums:
• w ⊨ Σx:A1.B1≡Σx:A2.B2 ⇐⇒ Famw (A1, A2, B1, B2)
• w ⊨ p1≡p2∈Σx:A.B ⇐⇒ □w (w

′.∃(a1, a2, b1, b2 : Term).w ′ ⊨ a1≡a2∈A ∧ w ′ ⊨ b1≡b2∈B[x\a1] ∧
p1 Z⇒w ′ ⟨a1, b1⟩ ∧ p2 Z⇒w ′ ⟨a2, b2⟩)

Sets:
• w ⊨ {x : A1 | B1}≡{x : A2 | B2} ⇐⇒ Famw (A1, A2, B1, B2)
• w ⊨ a1≡a2∈{x : A | B} ⇐⇒ □w (w

′.∃(b1, b2 : Term).w ′ ⊨ a1≡a2∈A ∧ w ′ ⊨ b1≡b2∈B[x\a1])
Disjoint unions:
• w ⊨ A1+B1≡A2+B2 ⇐⇒ w ⊨ A1≡A2 ∧ w ⊨ B1≡B2

• w ⊨ a1≡a2∈A+B ⇐⇒ □w (w
′.∃(u, v : Term).(a1 Z⇒w ′ inl(u) ∧ a2 Z⇒w ′ inl(v) ∧ w ′ ⊨ u≡v∈A) ∨

(a1 Z⇒w ′ inr(u) ∧ a2 Z⇒w ′ inr(v) ∧ w ′ ⊨ u≡v∈B))

Equalities:
• w ⊨ (a1=b1∈A)≡(a2=b2∈B) ⇐⇒ w ⊨ A≡B ∧ ∀⊑w (w ′.w ′ ⊨ a1≡a2∈A) ∧ ∀⊑w (w ′.w ′ ⊨ b1≡b2∈B)
• w ⊨ a1≡a2∈(a=b∈A) ⇐⇒ □w (w

′.w ′ ⊨ a≡b∈A)

Subsingletons:
• w ⊨ ∥A∥≡∥B∥ ⇐⇒ w ⊨ A≡B
• w ⊨ a≡b∈∥A∥ ⇐⇒ □w (w

′.w ′ ⊨ a≡a∈A ∧ w ′ ⊨ b≡b∈A)

Binary intersections:
• w ⊨ A1 ∩B1≡A2 ∩B2 ⇐⇒ w ⊨ A1≡A2 ∧ w ⊨ B1≡B2

• w ⊨ a1≡a2∈A ∩B ⇐⇒ □w (w
′.w ′ ⊨ a1≡a2∈A ∧ w ′ ⊨ a1≡a2∈B)

No-read types:
• w ⊨ NoRead≡NoRead ⇐⇒ True

• w ⊨ a≡b∈NoRead ⇐⇒ □w (w
′.∀(v : Value).(a Z⇒w ′ v → a ⇛w ′ v) ∧ (b Z⇒w ′ v → b ⇛w ′ v))

No-write types:
• w ⊨ NoWrite≡NoWrite ⇐⇒ True

• w ⊨ a≡b∈NoWrite ⇐⇒ □w (w
′.∀(v : Value).(a Z⇒w ′ v → a Z⇒w ′

w ′ v) ∧ (b Z⇒w ′ v → b Z⇒w ′

w ′ v))

Purity:
• w ⊨ Pure≡Pure ⇐⇒ True

• w ⊨ a1≡a2∈Pure ⇐⇒ (∃(t : Term).a1 ⇛!w t∧namefree(t))∧(∃(t : Term).a2 ⇛!w t∧namefree(t))
Modality closure:
• w ⊨ T1≡T2 ⇐⇒ □w (w

′.∃(T ′
1, T

′
2 : Term).T1 ⇛w ′ T ′

1 ∧ T2 ⇛w ′ T ′
2 ∧ w ′ ⊨ T ′

1≡T
′
2)

• w ⊨ t1≡t2∈T ⇐⇒ □w (w
′.∃(T ′ : Term).T ⇛w ′ T ′ ∧ w ′ ⊨ t1≡t2∈T ′)

Example 2.11. The Kripke covering (Ó) is defined as follows, i.e., w ◁K o whenever o
contains all the extensions of w :

w ◁K o :≡ ∀⊑w (w ′.o(w ′))

https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L136

Vol. 20:2 TT□
C : A FAMILY OF EFFECTFUL, EXTENSIONAL TYPE THEORIES 18:11

The Beth covering (Ó) is defined as follows, i.e., w ◁B o whenever o contains at least
one world from each “branch” (captured by chain below) starting from w :

w ◁B o :≡ ∀(c : chain(w)).∃(n : N).∃w ′ ⊑ (c n).o(w ′)

where chain(w) is the set of sequences of worlds in N → W such that c ∈ chain(w) iff
(1) w ⊑ c 0, (2) for all i ∈ N, c i ⊑ c (i+ 1); and (3) c is progressing, which is formally
defined in [CR22, Def.25], and informally captures that there exists two worlds w1 ⊑ w2 along
c where w2 is not w1, and this infinitely often.

The Open covering (Ó) is defined as follows, i.e., w ◁O o whenever o contains a world
that extends each world that extends w :

w ◁O o :≡ ∀⊑w (w1.∃⊑w1
(w2.o(w2)))

The Beth and Open coverings are in particular suitable to capture aspects of choice
sequences, which as mentioned above, can be seen as reference cells that include the history
of all the values ever stored in the cells. As discussed in [CR22], while the Beth covering is
incompatible with classical reasoning the Open covering allows validating axioms such as the
Law of Excluded Middle.

Theorem 2.12. Given a computation system with choices C and an equality modality □,
TT□

C is a standard type system in the sense that its forcing interpretation induced by □ satisfy
the following properties (where free variables are universally quantified):

transitivity: w ⊨ T1≡T2 → w ⊨ T2≡T3 → w ⊨ T1≡T3 w ⊨ t1≡t2∈T → w ⊨ t2≡t3∈T → w ⊨ t1≡t3∈T

symmetry: w ⊨ T1≡T2 → w ⊨ T2≡T1 w ⊨ t1≡t2∈T → w ⊨ t2≡t1∈T

computation: w ⊨ T≡T → T ⇛!w T ′ → w ⊨ T≡T ′ w ⊨ t≡t∈T → t ⇛!w t′ → w ⊨ t≡t′∈T

monotonicity: w ⊨ T1≡T2 → w ⊑ w ′ → w ′ ⊨ T1≡T2 w ⊨ t1≡t2∈T → w ⊑ w ′ → w ′ ⊨ t1≡t2∈T

locality: □w (w
′.w ′ ⊨ T1≡T2) → w ⊨ T1≡T2 □w (w

′.w ′ ⊨ t1≡t2∈T) → w ⊨ t1≡t2∈T

consistency: ¬w ⊨ t∈Void

Proof. The proof relies on the properties of the equality modality. For example: □1 is used
to prove monotonicity (Ó) when w ⊨ T1≡T2 is derived by closing under □w ; □2 and □4 are
used, e.g., to prove the symmetry (Ó) and transitivity (Ó) of w ⊨ t≡t′∈Nat; □3 is used to
prove locality (Ó); and □5 is used to prove consistency (Ó).

As indicated in Thm. 2.12, and as opposed to the counterpart of the theorem in [CR22],
w ⊨ T1≡T2 and w ⊨ t1≡t2∈T are no longer closed under all computations. For example,
when T :≡ Nat, if t ⇛w t′ and w ⊨ t≡n∈Nat, does not necessarily give us that w ⊨ t′≡n∈Nat.
An example is:

t :≡ (δ := 1;if !δ < 1 then 0 else 1)

which reduces to t′ :≡ (if !δ < 1 then 0 else 1) and also to 1 in all worlds, i.e., t ⇛w t′

and t ⇛w n for all w , and therefore w ⊨ t≡1∈Nat. However t′ does not reduce to 1 in all
worlds, and therefore w ⊨ t′≡1∈Nat does not hold, because δ could be initialized differently
in different worlds, for example with 0, in which case t′ would reduce to 0. This example can
be adapted to show that w ⊨ T1≡T2 is also not closed under all computations:

T :≡ (δ := 1;if !δ < 1 then Unit else Void)

which reduces to T ′ :≡ (if !δ < 1 then Unit else Void) and also to Void in all worlds,
i.e., T ⇛w T ′ and T ⇛w Void for all w , and therefore w ⊨ T≡Void. However, T ′ does not
reduce to Void in all worlds, because δ could be initialized differently in different worlds, and
therefore w ⊨ T ′≡Void does not hold.

https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L139
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L142
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L145
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L150
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L155
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L161
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L166

18:12 L. Cohen and V. Rahli Vol. 20:2

However, the following holds by transitivity of Z⇒:

t′ ⇛w t → w ⊨ t≡t∈Nat → w ⊨ t≡t′∈Nat

T ′ ⇛w T → w ⊨ T≡T → w ⊨ T≡T ′

To summarize, TT□
C is closed under the following computations:

• Ó U ⇛w U ′ → T ⇛w T ′ → w ⊨ T ′≡U ′ → w ⊨ T≡U .
• Ó U ⇛!w U ′ → T ⇛!w T ′ → w ⊨ T≡U → w ⊨ T ′≡U ′, where the restriction to ⇛!w is due

to the counterexample provided above
• Ó a ⇛!w a′ → b ⇛!w b′ → w ⊨ a≡b∈A → w ⊨ a′≡b′∈A, where the restriction to ⇛!w is

due to the counterexample provided above. In particular, as indicated in Thm. 2.12, this
semantics is closed under β-reduction, as β-reduction does not modify the current world,
i.e., (λx.t1) t2 ⇛!w t1[x\t2], for all world w .

• Ó a ⇛!w a′ → b ⇛!w b′ → w ⊨ a′≡b′∈A → w ⊨ a≡b∈A.

2.5. Different Levels of Effects. As mentioned above, TT□
C provides types that allow

capturing different levels and kinds of effects, which we summarize here using natural numbers
as an example:
• Read & write: The type Nat according to Fig. 2 is the type of potentially “fully” effectful

numbers that can both read and write, as they can modify the world they compute against
(e.g., (δ := 1);δ), and in addition can compute to different values in successive worlds, and
therefore return different values depending on the values they read (e.g., !δ).

• Write-only : The type |Nat|r according to Fig. 2 is the type of potentially effectful numbers
that can write but effectively cannot read (or in a limited way) because they are constrained
to compute to the same number in all extensions of the current world, which therefore
limits their use of reading, as for example, reading a reference cells is likely to influence
the outcome of the computation (e.g., (δ := 1);0, which writes but does not read). Note
that here and below, the read and write constraints are only indicative as for example
!δ;0 reads but still belongs to |Nat|r, and is considered write-only on the basis that it is
observationally equivalent to 0.

• Read-only : |Nat|w is the type of potentially effectful numbers that can read but effectively
cannot write as Nat is the type of numbers that can both read and write (e.g., !δ, which
reads but does not write).

• No read or write: The type |Nat|rw is the type of potentially effectful numbers that can only
use effects in a limited way and effectively cannot read or write because the |_|w operator
requires computations to end in the same worlds they started with, effectively preventing
writes, while |_|r requires computations to compute to the same value in successive worlds,
effectively preventing reads (e.g., 0, but also !δ;0, which reads in a limited way that does
not affect the computation, or (δ :=!δ);0, which writes in a limited way that does not affect
the computation).

• Pure: |Nat|c is the type of pure natural numbers, that do not contain choices, which is a
syntactic restriction (e.g., 0 but not !δ;0 as it contains a choice name δ even though this
name does not affect the computation).

We therefore obtain the following inclusions, where we write T ⊆ U for T is a subtype
of U , i.e., all equal members of T are equal members of U : |Nat|c ⊆ |Nat|w ⊆ Nat and
|Nat|c ⊆ |Nat|r ⊆ Nat.

https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L169
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L176
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L183
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L190

Vol. 20:2 TT□
C : A FAMILY OF EFFECTFUL, EXTENSIONAL TYPE THEORIES 18:13

2.6. Inference Rules. In TT□
C , sequents are of the form H ⊢ t : T , where H is a list of

hypotheses h1, . . . , hn, and a hypothesis h is of the form x:A, where the variable x stands
for the name of the hypothesis and A its type. Such a sequent denotes that, assuming
h1, . . . , hn, the term t is a member of the type T , and that therefore T is a type. The term t
in this context is called the realizer of T . Realizers are sometimes omitted when irrelevant
to the discussion, in particular when T is an equality type, which can be realized by any
term according to their semantics in Fig. 2. A rule is a pair of a conclusion sequent S and
a list of premise sequents, S1, · · · , Sn (written as usual using a fraction notation, with the
premises on top). Appx. A provides a sample of TT□

C ’s key inference rules, while Sec. 3
provides examples of rules that only hold for some instances of TT□

C , and Sec. 4.2 presents
the continuity rule.

3. Principles (In)Compatible with TT□
C

TT□
C enables the study of various effectful type theories and their associated theories and

in particular, their (in)compatibility with classical reasoning. In fact, in [CR22] we have
identified instances of TT□

C that are agnostic with respect to classical reasoning, in that
they are consistent with the Law of Excluded Middle (LEM) (Ó), and other instances
that are incompatible with classical reasoning, in that they allow validating the negation
of LEM (Ó), the Limited Principle of Omniscience (LPO) [Bis67, p.9] (Ó), and Markov’s
Principle (MP) (Ó).

In particular, we have shown that instantiating C with either references of choice sequences
and □ with a Beth modality, derived from the Beth covering presented in Ex. 2.11, leads to
theories that invalidate LEM, i.e., such that the following holds:

∀(w : W).¬w ⊨ ΠP :Ui.↓(P+¬P)

The following inference rule is therefore consistent with those instances of TT□
C :

H ⊢ ¬ΠP :Ui.↓(P+¬P)

However, instantiating C with either references of choice sequences and □ with an Open
modality, derived from the Open covering presented in Ex. 2.11, leads to theories that are
compatible with LEM, i.e., such that the following holds (using classical reasoning in the
metatheory to validate this axiom):

∀(w : W).w ⊨ ΠP :Ui.↓(P+¬P)

The following inference rule is therefore consistent with those instances of TT□
C :

H ⊢ ΠP :Ui.↓(P+¬P)

While applying the |_|w and |_|r modalities to + does not change the above results, this
is not the case about MP and LPO. Here we demonstrate how the statements and proofs
presented in [CR22] can be translated to the current modified theory. In particular, the
statments are translated so that they use |Nat|rw and |Bool|rw, where the |_|r modality was
built in the semantics of the theory used in [CR22]. The use of the |_|w modality is further
discussed below since there was no object computation to extend a world in [CR22]. We
demonstrate this with the translation of MP:

∀(w : W).¬w ⊨ Πf :|Nat|rw → |Bool|rw.¬¬(Σn:|Nat|rw.↑(f n))) → ↓Σn:|Nat|rw.↑(f n)

https://github.com/vrahli/opentt/blob/lmcs24/lem.lagda
https://github.com/vrahli/opentt/blob/lmcs24/not_lem.lagda
https://github.com/vrahli/opentt/blob/lmcs24/not_lpo.lagda
https://github.com/vrahli/opentt/blob/lmcs24/not_mp.lagda

18:14 L. Cohen and V. Rahli Vol. 20:2

The proof of the validity of the above statement, i.e., the negation of MP, relies crucially
on the fact that TT□

C ’s computation system includes stateful computations that can evolve
non-deterministically over time. In particular, as discussed above, TT□

C not only supports
choices in the form of reference cells, but also choice sequences. As opposed to reference cells
which hold a mutable choice, a choice sequence is an ever growing sequence of immutable
choices. To access the nth choice, the read function needs to be of type W → N → N → C;
the ! operator needs to be updated accordingly: !δ(n); as well as its operational semantics
!δ(n) 7→w

w read(w , δ, n).
This validity proof was possible in [CR22] because there was then no way for computations

to extend the world they compute in. In that proof, f is instantiated with λn.!δ(n) for some
choice sequence name δ, which requires choices to be Booleans. We can prove that δ inhabits
|Nat|rw → |Bool|rw, and in particular we can use the no-read modality |_|r, because choices
made by choice sequences are immutable, and so for a given n ∈ |Nat|rw, the term !δ(n) will
always compute to the same Boolean. We then prove that even though ¬¬Σn:|Nat|rw.↑(f n)
holds because in any world it is always possible to find an extension where δ makes the tt
choice, ↓Σn:|Nat|rw.↑(f n) does not hold because there is no way to prove that δ will ever
make the choice tt. It then follows that the following inference rule is consistent with TT□

C
where C is instantiated with choices sequences, and □ with the Beth modality.

H ⊢ ¬Πf :|Nat|rw → |Bool|rw.¬¬(Σn:|Nat|rw.↑(f n))) → ↓Σn:|Nat|rw.↑(f n)

Let us go back to the use of the |_|w modality. Because computations can now update
the world they compute in, it could be that a n ∈ Nat computes to a k while updating the
world by making the choice tt. Therefore, while we can prove the validity of the negation of
MP as formulated above, we cannot validate the following version using the same method:

∀(w : W).¬w ⊨ Πf :|Nat|r → |Bool|r.¬¬(Σn:|Nat|r.↑(f n))) → ↓Σn:|Nat|r.↑(f n)

Instantiating f with λn.!δ(n) again, we can still prove that ¬¬Σn:|Nat|r.↑(f n) holds because
once again we can exhibit a world where the choice tt is made. However, we cannot prove
anymore that ↓Σn:|Nat|r.↑(f n), i.e., ↓Σn:|Nat|r.↑(!δ(n)), does not hold because we can
instantiate n with (δ := tt);x, where the choice made with δ := tt happens to be the xth
choice. Using the |_|w modality prevents the use of δ := tt.

4. Proof of Continuity

Having covered TT□
C , its support for effects, and its semantics in Sec. 2, we now state the

version of Brouwer’s continuity principle that we validate in this paper, along with its effectful
realizer. For this we first introduce the following notation: Πpa:A.B :≡ Πa:|A|c.B, which
quantifies over pure elements of type A. In addition, in the rest of this paper we write N for
|Nat|r for readability, and B and Bn stand for N → N and {x : N | x < n} → N, respectively.

Theorem 4.1 (Ó Continuity Principle). The following continuity principle, referred to as
CONTp, is valid w.r.t. the semantics presented in Sec. 2.4 (further assuming the properties
Asm1, Asm2, and Asm3, presented in Sec. 4.2):

ΠpF :B → N.Πpα:B.∥Σn:N.Πpβ:B.(α=β∈Bn) → (F (α)=F (β)∈N)∥ (4.1)

and is inhabited by
λF.λα.⟨mod(F, α), λβ.λe.⋆⟩ (4.2)

https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L197

Vol. 20:2 TT□
C : A FAMILY OF EFFECTFUL, EXTENSIONAL TYPE THEORIES 18:15

where mod(F, α) is the modulus of continuity of the function F ∈ B → N at α ∈ B and is
computed by the following expression:

mod(F, α) :≡ νx.((x := 0);F (upd(x, α));succ(!x))

upd(δ, α) :≡ λx.(let y = x in ((if !δ < y then δ := y else ⋆);α(y)))

More precisely, the following is true for any world w :

w ⊨ λF.λα.⟨mod(F, α), λβ.λe.⋆⟩∈CONTp

The rest of this section describes the proof of this theorem. First, we intuitively explain
how mod(F, α) computes the modulus of continuity of a function F at a point α. This is
done using the following steps:
(1) selecting, using ν, a fresh choice name δ (the variable x gets replaced with the freshly gen-

erated name δ when computing mod), with the appropriate restriction (here a restriction
that requires choices to be numbers as mentioned in Sec. 2.3);

(2) setting δ to 0 using x := 0 (where x is δ when this expression computes);
(3) applying F to a modified version of α, namely upd(δ, α), which computes as α, except

that in addition it increases δ’s value every time α is applied to a number larger than
the last chosen one;

(4) returning the last chosen number using !x (again x is δ when this expression computes),
increased by one in order to return a number higher than any number F applies α to.
Let us illustrate how mod computes through the following example:

Example 4.2. Given the following expressions:

F :≡ λα.α(α(2))

α :≡ λn.succ(n)

the expression mod(F, α) computes as follows. First, it generates a fresh name δ, which
is used to record the values to which α is applied to. Then, δ is initialized with 0. It
then computes F (upd(δ, α)), i.e., t1 :≡ upd(δ, α)(upd(δ, α)(2)). Due to upd’s definition, the
argument t2 :≡ upd(δ, α)(2) is evaluated, which in turn results in the evaluation of 2. Since 2
is a value, δ’s value, which is 0, is compared to 2, and since 2 > 0, δ is updated with 2.
The computation of t2 proceeds by applying α to 2, which results in 3. Going back to the
computation of t1, once the argument t2 has been evaluated to 3, δ’s value, which is now
2 is updated with 3 since 3 > 2. The computation of t1 then proceeds by applying α to 3,
which is the result returned by F (upd(δ, α)). Finally, mod reads δ’s value, which is now 3 and
returns 4, which is higher than the two values α is applied to, namely 2 and 3.

We divide the proof of the validity of the continuity principle, i.e., that it is inhabited by
the expression presented in Eq. (4.2), into the following three components, where F ∈ B → N
and α ∈ B:
• Proving that the modulus is a number, i.e., mod(F, α) ∈ N;
• Proving that mod(F, α) returns the highest number that α is applied to in the computation

it performs;
• Given β ∈ B, proving that F (α) and F (β) return the same number if α and β agree up to
mod(F, α).

18:16 L. Cohen and V. Rahli Vol. 20:2

4.1. Purity. The proof presented below relies, among other things, on the fact that
α=upd(δ, α)∈B given a fresh choice name δ, where upd(δ, α) is used to “probe” F in
mod(F, α). This equality is however not true for α ∈ Nat → Nat. Consider for exam-
ple the function α :≡ λn.if !γ < 1 then 0 else 1, where γ is a choice name. To prove
α=upd(δ, α)∈Nat → Nat we have to prove that α(n)=upd(δ, α)(n)∈Nat for all n ∈ Nat.
Given n :≡ (γ := 1);1, the term α(n) computes to 0 in a world where γ is 0 because n is
not evaluated, while upd(δ, α)(n) first evaluates n, setting γ to 1, and therefore computes
to 1 in any world. To avoid this, instead of using Nat, we use N, thereby limiting the effects
expressions can have.

According to N’s semantics, which is as follows:

w ⊨ t≡t′∈N ⇐⇒ □w (w
′.∃(n : N).t ⇛w ′ n ∧ t′ ⇛w ′ n)

to prove that mod(F, α) ∈ N w.r.t. a world w , we have to prove that it computes to the same
number in all extensions of w . However, this will not be the case if F or α have side effects.
For example, if F is λf.f(!δ0);0, for some choice name δ0, then it could happen that f gets
applied to 0 in some world w1 if !δ0 returns 0, and to 1 in some world w2 ⊒ w1 if !δ0 returns 1.
As mod(F, α) returns the highest number that F applies its argument to, then mod(F, α)
would in this instance return different numbers in different extensions, and would therefore
not inhabit N.

Therefore, to validate a version of continuity which requires the modulus of continuity
to be “time-invariant” as in Eq. (4.1), one can require that both F and α are pure (i.e.,
name-free) terms. Thanks to Πp, we get to assume that both F and α are in Pure and
therefore are name-free. Note that it would not be enough to use the following pattern:
ΠF :B → N.(F=F∈Pure) → . . . , because then for the continuity principle to even be a type,
we would have to prove that F is name-free to prove that F=F∈Pure is a type, only knowing
that F ∈ B → N, due to the semantics of equality types, which is not true in general, and
which is why we instead use _ ∩ Pure.

Let us now discuss a potential solution to avoid such a purity requirement, as well as
some difficulties it involves, which we leave investigating to future work. One could try to
validate instead the following version of the continuity axiom, which mixes the uses of N and
Nat, where Br

n = {x : N | x <r n} → N, assuming the existence of some type x <r n that
can relate an x ∈ N with an n ∈ Nat:

ΠF :B → N.Πα:B.∥Σn:Nat.Πβ:B.(α=β∈Br
n) → (F (α)=F (β)∈N)∥

A first difficulty with this is the type x <r n, which to prove that it holds in some world w
would require proving that x is equal to all possible values that n can take in extensions
of w . Another related difficulty is that it is at present unclear whether this principle can be
validated constructively. More precisely, proving its validity would require:
(1) Proving that mod(F, α) ∈ Nat, which is now straightforward.
(2) Next, we have to prove that Πβ:B.(α=β∈Br

mod(F,α)) → (F (α)=F (β)∈N), i.e., given
β ∈ B such that α=β∈Br

mod(F,α), we have to prove F (α)=F (β)∈N. The assumption
α=β∈Br

mod(F,α) tells us that given k ∈ N such that k <r mod(F, α), then α(k)=β(k)∈N.
As mentioned above, for k <r mod(F, α) to be true, it must be that k is less than
mod(F, α) in all extensions of the current world. However, without the purity constraint,
mod(F, α) can compute to different numbers in different extensions.
Going back to our goal F (α)=F (β)∈N, given the semantics of N presented above, to

prove this it is enough to assume that F (upd(δ, α)) computes to some number m in some

Vol. 20:2 TT□
C : A FAMILY OF EFFECTFUL, EXTENSIONAL TYPE THEORIES 18:17

world w , and to prove that F (β) also computes to m in w . We can then inspect the
computation F (upd(δ, α)) Z⇒w

w1
k, where δ is the name generated by mod(F, α), and show

that it can be converted into a computation F (β) Z⇒w
w2

k, by replacing α(i) with β(i),
whenever we encounter such an expression. To do this, we need to know that α(i) and β(i)
compute to the same number using α=β∈Br

mod(F,α). However, we only know that i is less
than mod(F, α) in w , which is not enough to use this assumption, as i might be greater than
mod(F, α) in some other world w ′. We can address this issue using classical logic to prove
that there exists a w ′ ⊒ w such that for all w ′′ ⊒ w , the smallest number that α is applied to
in the computation of mod(F, α) w.r.t. w ′ is less than the number that mod(F, α) computes
to w.r.t. w ′′. In the argument sketched above we can then use w ′ instead of w .

4.2. Assumptions. Before we prove that the continuity principle is inhabited, we will
summarize here the assumptions we will be making to prove this result, where r is a
restriction that requires choices to be numbers:

(Asm1 Ó) ∀(w : W)(P : Pw).□wP → ∃⊑w (P)

(Asm2 Ó) ∀(δ : N)(w : W)(n : N).comp(δ,w , r) → ∀⊑write(w ,δ,n)(w
′.∃(k : N).read(w ′, δ) = k)

(Asm3 Ó) ∀(δ : N)(w : W)(k : N).comp(δ,w , r) → read(write(w , δ, k), δ) = k

Asm1 requires the modality □ to be non-empty in the sense that for □wP to be true, it
has to be true for at least one extension of w . This is true about all non-empty covering
relations (i.e., that satisfy the property that if w ◁ o then ∃⊑w (w ′.o(w ′)) Ó), and therefore
about the Kripke, Beth, and Open modalities which are derived from such coverings [CR22,
Sec.6.2]. Asm2 requires that the “last” choice of a r-compatible choice name δ is indeed a
number. Asm3 guarantees that retrieving a choice that was just made will return that choice.

The last two assumptions are true about Ref, the formalization of references to numbers
presented in Ex. 2.8 (TT□

C instantiated with a Kriple modality and references satisfies these
properties Ó). In addition both are true about another kind of stateful computations, namely
a variant of the formalization of choice sequences presented in [CR22, Ex.5], where new
choices are pre-pended as opposed to being appended in [CR22] (TT□

C instantiated with a
Kriple modality and choice sequences satisfies these properties Ó).

It then follows from Thm. 4.1 that the following inference rule is consistent with the
instances of TT□

C mentioned above:

H ⊢ λF.λα.⟨mod(F, α), λβ.λe.⋆⟩ : CONTp

4.3. The Modulus is a Number. In this section we prove that mod(F, α) ∈ N. More
precisely, we prove the following:

Theorem 4.3 (Ó The Modulus is a Number). If namefree(F), namefree(α), w ⊨ F∈NB,
and w ⊨ α∈B, for some world w , then

□w (w
′.∃(n : N).mod(F, α) ⇛w ′ n) (4.3)

To prove the above, we will make use of the fact that w ⊨ upd(δ, α)∈B and therefore
also w ⊨ F (upd(δ, α))∈N, i.e., by the semantics of N presented in Sec. 4.1, we have for some
fresh name δ:

□w (w
′.∃(n : N).F (upd(δ, α)) ⇛w ′ n). (4.4)

https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L202
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L205
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L208
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L211
https://github.com/vrahli/opentt/blob/lmcs24/contInstanceKripkeRef.lagda
https://github.com/vrahli/opentt/blob/lmcs24/contInstanceKripkeCS.lagda
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L216

18:18 L. Cohen and V. Rahli Vol. 20:2

But for this we first need to start computing mod(F, α) to generate a fresh name δ according
to the current world. If that current world is some world w ′ ⊒ w (obtained, for example,
using □4 from Def. 2.10 on Eq. (4.3)), then we need to be able to get that F (upd(δ, α))
computes to a number w.r.t. w ′, which Eq. (4.4) might not provide. This is the reason for
assumption Asm1.

Going back to the proof of Eq. (4.3), we use □4, and have to prove ∃(n : N).mod(F, α) ⇛w1

n for some w1 ⊒ w . We then:

(A) first have to find a number n such that mod(F, α) computes to n w.r.t. w1,
(B) and then show that it does so also for all w ′

1 ⊒ w1.

Let us prove (A) first. We now start computing mod(F, α) w.r.t. w1. We generate a
fresh name δ :≡ νC(w1), and have to prove that (δ := 0);F (upd(δ, α));succ(!δ) computes
to a number w.r.t. w2 :≡ startνC(w1, r) that satisfies comp(δ,w2, r) (by the properties of
startνC presented in Def. 2.5). We keep computing this expression and have to prove that
F (upd(δ, α));succ(!δ) computes to a number w.r.t. w3 :≡ write(w2, δ, 0).

From Asm1 and Eq. (4.4), we obtain w5 ⊒ w and n ∈ N such that F (upd(δ, α)) ⇛w5 n,
from which we obtain by definition that there exists a w6 such that F (upd(δ, α)) Z⇒w5

w6
n.

Now, because F and α are name-free, we can derive that there exists a w4 such that
F (upd(δ, α)) Z⇒w3

w4
n (Ó). It now remains to prove that n;succ(!δ), computes to a number

w.r.t. w4. It is then enough to prove that !δ computes to a number k w.r.t. w4, in which case
n;succ(!δ) computes to k+1 w.r.t. w4. To prove this we make use of Asm2 which states that
r constrains the δ-choices to be numbers. Using this and the facts that comp(δ,w2, r) and
w2 ⊑ w4 (by ⊑’s transitivity since w3 ⊑ w4 by Lem. 2.9 and w2 ⊑ w3 by Def. 2.7), we deduce
that there exists a k ∈ N such that read(w4, δ) = k, and therefore !δ computes to k w.r.t. w4,
and n;succ(!δ) computes to k+1 w.r.t. w4, which concludes the proof of (A).

To prove ∃(n : N).mod(F, α) ⇛w1 n, we then instantiate the formula with k+1, and
have to prove mod(F, α) ⇛w1 k+1. We already know that mod(F, α) Z⇒w1

w4
k+1, i.e., part (A)

above, and we now prove part (B) above, i.e., that it does so in all extensions of w1 too.
To prove (B) we assume a w ′

1 ⊒ w1 and have to prove that mod(F, α) computes to k+1
w.r.t. w ′

1. As before, we start computing mod(F, α) w.r.t. w ′
1, and generate a fresh name

δ′ :≡ νC(w ′
1), and have to prove that F (upd(δ′, α));succ(!δ′) computes to k+1 w.r.t. w ′

3 :≡
write(w ′

2, δ
′, 0), where w ′

2 :≡ startνC(w ′
1, r). As F and α are name-free, t1 :≡ F (upd(δ, α))

and t2 :≡ F (upd(δ′, α)) behave the same except that when t1 updates δ with a number, t2
updates δ′ with that number.

Using a syntactic simulation method, we will prove that because t1 and t2 are “similar”
(which is captured by Def. 4.4 below), read(w3, δ) = read(w ′

3, δ
′), and t1 Z⇒w3

w4
t′1, then t2 Z⇒w ′

3

w ′
4

t′2 such that t′1 and t′2 are also “similar” and read(w4, δ) = read(w ′
4, δ

′). Note that read(w3, δ)
and read(w ′

3, δ
′) return the same choice because read(w3, δ) = read(write(w2, δ, 0), δ) = 0 and

read(w ′
3, δ

′) = read(write(w ′
2, δ

′, 0), δ′) = 0. To derive these equalities, we need assumption
Asm3 that relates read and write.

Let us now define the simulation mentioned above:

https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L225

Vol. 20:2 TT□
C : A FAMILY OF EFFECTFUL, EXTENSIONAL TYPE THEORIES 18:19

Definition 4.4 (Ó). The similarity relation t1 ∼δ1,δ2,α t2 is true iff

(t1 = upd(δ1, α) ∧ t2 = upd(δ2, α))

∨ (t1 = x ∧ t2 = x) ∨ (t1 = ⋆ ∧ t2 = ⋆) ∨ (t1 = n ∧ t2 = n)

∨ (t1 = λx.a ∧ t2 = λx.b ∧ a ∼δ1,δ2,α b)

∨ (t1 = (a1 b1) ∧ t2 = (a2 b2) ∧ a1 ∼δ1,δ2,α a2 ∧ b1 ∼δ1,δ2,α b2)

∨ . . .

Most cases are omitted in this definition as they are similar to the ones presented above.
Note however that crucially terms of the form δ or νx.t are not related, and that those are
the only expressions not related, thereby ruling out names except when occurring inside upd

through the first clause.

As discussed above, a key property of this similarity relation is as follows, where all free
variables are universally quantified, and which we prove by induction on the computation
t1 Z⇒w1

w ′
1
t′1:

Lemma 4.5 (Ó ∼ is preserved by computations). If t1 ∼δ1,δ2,α t2, namefree(α),
read(w1, δ1) = read(w2, δ2), t1 Z⇒w1

w ′
1
t′1, comp(δ1,w1, r), and comp(δ2,w2, r), then there exist

w ′
2 and t′2 such that t2 Z⇒w2

w ′
2
t′2, t

′
1 ∼δ1,δ2,α t′2, and read(w ′

1, δ1) = read(w ′
2, δ2).

We therefore obtain that there exist t′2 and w ′
4 such that F (upd(δ′, α)) Z⇒w ′

3

w ′
4
t′2, n ∼δ,δ′,α t′2

and read(w ′
4, δ

′) = read(w4, δ) = k. Furthermore, by definition of the similarity relation, t′2 =

n. We obtain that F (upd(δ′, α));succ(!δ′) Z⇒w ′
3

w ′
4
n;succ(!δ′) and so F (upd(δ′, α));succ(!δ′) Z⇒w ′

3

w ′
4

succ(!δ′). Because read(w ′
4, δ

′) = k, we finally obtain F (upd(δ′, α));succ(!δ′) Z⇒w ′
3

w ′
4
k+1, which

concludes the proof of (B), and therefore that mod(F, α) ∈ N.

4.4. The Modulus is the Highest Number. We now prove that mod(F, α) returns the
highest number that α is applied to in the computation it performs:

Theorem 4.6 (Ó The Modulus is the Highest Number). If mod(F, α) Z⇒w
w ′ n such that

mod(F, α) generates a fresh name δ and read(w ′, δ) = i, then for any world w0 occurring
along this computation, it must be that read(w0, δ) = j such that j ≤ i.

As shown above, we know that for any world w1 there exist w2 ∈ W and k ∈ N such
that mod(F, α) Z⇒w1

w2
k+1. As in Sec. 4.3, we start computing mod(F, α) w.r.t. the current

world w1, and generate a fresh name δ :≡ νC(w1), and deduce that

F (upd(δ, α));succ(!δ) Z⇒w ′′
1

w2 k+1 (4.5)

where w ′
1 :≡ startνC(w1, r) and w ′′

1 :≡ write(w ′
1, δ, 0). Furthermore, by Asm2, there must be a

n ∈ N such that read(w2, δ) = n.
We now want to show that if n < m, for some m ∈ N (which we will instantiate with

k+1), then it must also be that for any world w along the computation in Eq. (4.5), if
read(w , δ) = i then i < m. This is not true about any computation, but it is true about the
above because upd only makes a choice if that choice is higher than the “current” one. To
capture this, we define the property Updδ,α(t), which captures that the only place where δ
occurs in t is wrapped inside upd(δ, α). That is, Updδ,α(t) is true iff t ∼δ,δ,α t. We can then
prove the following result by induction on the computation t Z⇒w1

w2
u:

https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L237
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L240
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L244

18:20 L. Cohen and V. Rahli Vol. 20:2

Lemma 4.7 (Ó). Let α be a closed name-free term, and t be a term such that Updδ,α(t)
and t Z⇒w1

w2
u, and let read(w2, δ) = n, such that n < m, then for any world w along the

computation t Z⇒w1
w2

u if read(w , δ) = i then i < m.

Applying this result to F (upd(δ, α));succ(!δ) Z⇒w ′′
1

w2 k+1 and instantiating m with k+1,
we obtain that for any world w along that computation if read(w , δ) = i then i < k+1.

4.5. The Modulus as a Modulus. We now prove the crux of continuity, namely that F
returns the same number on functions that agree up to mod(F, α):

Theorem 4.8 (Ó The Modulus as a Modulus). If w ⊨ α≡β∈Bn then w ⊨ F (α)≡F (β)∈N.

First, we prove that w ⊨ F (α)≡F (upd(δ, α))∈N, which follows from the semantics of Π
and N presented in Fig. 2, and in particular the crucial fact that w ⊨ α≡upd(δ, α)∈B. It is
therefore enough to prove that F (upd(δ, α)) and F (β) are equal in N. Relating F (upd(δ, α))
and F (β) instead of F (α) and F (β) allows getting access to the values α gets applied to in
the computation F (α) as they are recorded using the choice name δ. We can then use these
values to prove that F (upd(δ, α)) and F (β) behave similarly up to applications of α in the
first computation (i.e., the computation of F (upd(δ, α)) to a value), which are applications
of β in the second (i.e., the computation of F (β) to a value), and that these applications
reduce to the same numbers because the arguments, recorded using δ, are less than mod(F, α).

However, even though upd(δ, α) and α are equal in B, they behave slightly differently
computationally as upd(δ, α) turns the call-by-name computations α(t) into call-by-value
computations by first reducing t into an expression of the form i. By typing, we know that
F (upd(δ, α)) and F (β) compute to numbers, and to relate the two computations to prove
that they compute to the same number, we first apply a similar transformation to F (β). Let
cbv be defined as follows:

cbv(f) :≡ λx.let y = x in f(y).

It is straightforward to derive that w ⊨ F (β)≡F (cbv(β))∈N from the semantics of Π and N
presented in Fig. 2, and in particular the crucial fact that w ⊨ β≡cbv(β)∈B. It is therefore
enough to prove that F (upd(δ, α)) and F (cbv(β)) are equal in N.

Because F (upd(δ, α)) Z⇒w
w ′ n (as explained in part (A) in the proof of Thm. 4.3), by

Lem. 4.7 for any world w0 along this computation if read(w0, δ) = i then i < k+1, where
k+1 is the number computed by mod(F, α).

We now prove that F (upd(δ, α)) and F (cbv(β)) both compute to n through another
simulation proof that relies on the following relation:

Definition 4.9 (Ó). The similarity relation t1 ≈δ,α,β t2 is true iff

(t1 = upd(δ, α) ∧ t2 = cbv(β))

∨ (t1 = x ∧ t2 = x) ∨ (t1 = ⋆ ∧ t2 = ⋆) ∨ (t1 = n ∧ t2 = n)

∨ (t1 = λx.a ∧ t2 = λx.b ∧ a ≈δ,α,β b)

∨ (t1 = (a1 b1) ∧ t2 = (a2 b2) ∧ a1 ≈δ,α,β a2 ∧ b1 ≈δ,α,β b2)

∨ . . .

Most cases are omitted in this definition as they similar to the ones presented above. Note
however that crucially terms of the form δ or νx.t are not related, and that those are the
only expressions not related, thereby ruling out names except when occurring inside upd

through the first clause.

https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L255
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L261
https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L273

Vol. 20:2 TT□
C : A FAMILY OF EFFECTFUL, EXTENSIONAL TYPE THEORIES 18:21

A key property of this relation is as follows, which captures that t1 ≈δ,α,β t2 is preserved
by computations, and which we prove by induction on the computation t1 Z⇒w

w ′ t′1:

Lemma 4.10 (Ó). If t1 ≈δ,α,β t2, α and β agree up to k, t1 Z⇒w
w ′ t′1 and for any world w0

along this computation if read(w0, δ) = i then i < k+1, then t2 Z⇒w
w t′2 such that t′1 ≈δ,α,β t′2.

Therefore, because F (upd(δ, α)) ≈δ,α,β F (cbv(β)) (as F is name-free) and F (upd(δ, α))
computes to n, using Lem. 4.10 it must be that F (cbv(β)) also computes to n, which
concludes our proof of Thm. 4.1, i.e., of the validity of the continuity principle for pure
functions.

5. Conclusion and Related Works

The TT□
C family of type theories is a uniform, flexible framework for studying effectful type

theories. In this paper we focused on identifying a subset of the TT□
C family that allows for

the internal validation of the continuity principle. That is, we have shown how, for this subset
of theories, the modulus of continuity of functions can be computed using an expression of
the underlying computation system. This internalization required stateful computations, and
we discuss some of the challenges arising from such impure computations. As mentioned in
the introduction, and as recalled below, this is not the first proof of continuity, however to
the best of our knowledge, this is the first proof of an “internal” validity proof of continuity
that relies on stateful computations. Furthermore, the proof presented above relies on
an “internal” notion of probing through the use of stateful computations internal to the
computation language of the type theory, while approaches such as [CJ10, CJ12, XE13] rely
on a meta-theoretic (or “external”) notion of probing.

Troelstra proved in [Tro73, p.158] that every closed term t ∈ NB of N-HAω has a provable
modulus of continuity in N-HAω—see also [Bee85] for similar proofs of the consistency of
continuity with various constructive theories.

Coquand and Jaber [CJ10, CJ12] proved the uniform continuity of a Martin-Löf-like
intensional type theory using forcing. Their method consists in adding a generic element f as
a constant to the language that stands for a Cohen real of type 2N, and defining the forcing
conditions as approximations of f. They then define a suitable computability predicate that
expresses when a term is a computable term of some type up to approximations given by the
forcing conditions. The key steps are to (1) first prove that f is computable and then (2)
prove that well-typed terms are computable, from which they derive uniform continuity: the
uniform modulus of continuity is given by the approximations.

Similarly, Escardó and Xu [XE13] proved that the definable functionals of Gödel’s
system T [GTL89] are uniformly continuous on the Cantor space C :≡ N → B (without
assuming classical logic or the Fan Theorem). For that, they developed the C-Space category,
which internalizes continuity, and has a Fan functional which computes the modulus of
uniform continuity of functions in C → N. Relating C-Space and the standard set-theoretical
model of system T, they show that all System T functions on the Cantor space are uniformly
continuous. Furthermore, using this model, they show how to extract computational content
from proofs in HAω extended with a uniform continuity axiom, which is realized by the Fan
functional.

In [Esc13b], Escardó proves that all System T functions are continuous on the Baire space
and uniformly continuous on the Cantor space without using forcing. Instead, he provides
an alternative interpretation of system T, where a number is interpreted by a dialogue tree,

https://github.com/vrahli/opentt/blob/lmcs24/lmcs24.lagda#L276

18:22 L. Cohen and V. Rahli Vol. 20:2

which captures the computation of a function w.r.t. an oracle of type B. Escardó first proves
that such computations are continuous, and then by defining a suitable relation between
the standard interpretation and the alternative one, that relates the interpretations of all
system T terms, derives that for all system T functions on the Baire space are continuous.
While in [Esc13b], dialogue trees are constructed and leave outside of System T, in [Esc13a],
Escardó showed that it is possible to derive System T definable Church-encoded dialogue
trees, albeit still deriving these trees outside of System T (through a metatheoretic induction
on System T terms).

Chuangjie later developed in [Xu20] a related syntactic approach, that does not rely on
dialogue trees, which allows recovering the continuity of System-T functionals, as well as the
fact that moduli of continuity are T-definable.

In [RB16, RB17], the authors proved that Brouwer’s continuity principle is consistent
with Nuprl [CAB+86, ABC+06] by realizing the modulus of continuity of functions on the
Baire space also using Longley’s method [Lon99], but using exceptions instead of references.
The realizer there is more complicated than the one presented in this paper as it involves an
effectful computation that repeatedly checks whether a given number is at least as high as
the modulus of continuity, and increasing that number until the modulus of continuity is
reached. We do not require such a loop, and can directly extract the modulus of continuity
of a function.

In [BMP22] the authors prove that all BTT [PT17] functions are continuous by general-
izing the method used in [Esc13b]. Their model is built in three steps as follows: an axiom
model/translation adds an oracle to the theory at hand; a branching model/translation
interprets types as intensional D-algebras, i.e., as types equipped with pythias; and an alge-
braic parametricity model/translation that relates the two previous translations by relating
the calls to the pythia to the oracle. Their models allows deriving that all functions are
continuous, but does not allow “internalizing” the continuity principle, which is the goal of
this paper.

Another version of the continuity principle, the Inductive Continuity Principle, has also
been explored recently [GHP06, GHP09b, GHP09a, Esc13b]. This principle is sometimes
referred to as the Strong Continuity Principle since it implies the continuity principle discussed
in this paper (and other variants). Roughly speaking, it states that for any function F from
the Baire space to numbers, there exists a (dialogue) tree that contains the values of F
at its leaves and such that the modulus of F at each point of the Baire space is given by
the length of the corresponding branch in the tree. In [CdRPRT23] we have identified a
subset of the TT□

C family that allows for the internal validation of the Inductive Continuity
Principle via computations that construct such dialogue trees internally to the theories using
effectful computations. To prove finiteness of the computed trees and termination of the
overall program we there had to resort to (meta-)classical reasoning, and it remains to be
seen if this can be avoided.

References

[ABC+06] Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph Kreitz, Lori
Lorigo, and Evan Moran. Innovations in computational type theory using Nuprl. J. Applied
Logic, 4(4):428–469, 2006. http://www.nuprl.org/.

[AGD] Agda wiki. http://wiki.portal.chalmers.se/agda/pmwiki.php.

http://www.nuprl.org/
http://wiki.portal.chalmers.se/agda/pmwiki.php

Vol. 20:2 TT□
C : A FAMILY OF EFFECTFUL, EXTENSIONAL TYPE THEORIES 18:23

[AR14] Abhishek Anand and Vincent Rahli. Towards a formally verified proof assistant. In Gerwin
Klein and Ruben Gamboa, editors, ITP 2014, volume 8558 of LNCS, pages 27–44. Springer,
2014. doi:10.1007/978-3-319-08970-6_3.

[Bee85] Michael J. Beeson. Foundations of Constructive Mathematics. Springer, 1985.
[Bis67] E. Bishop. Foundations of constructive analysis, volume 60. McGraw-Hill New York, 1967.
[BMP22] Martin Baillon, Assia Mahboubi, and Pierre-Marie Pédrot. Gardening with the pythia A

model of continuity in a dependent setting. In Florin Manea and Alex Simpson, editors, CSL,
volume 216 of LIPIcs, pages 5:1–5:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.CSL.2022.5.

[BR87] Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics. London Math-
ematical Society Lecture Notes Series. Cambridge University Press, 1987. URL: http:
//books.google.com/books?id=oN5nsPkXhhsC.

[CAB+86] Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland, J. F. Cremer, Robert W.
Harper, Douglas J. Howe, Todd B. Knoblock, Nax P. Mendler, Prakash Panangaden, James T.
Sasaki, and Scott F. Smith. Implementing mathematics with the Nuprl proof development
system. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

[CdRPRT23] Liron Cohen, Bruno da Rocha Paiva, Vincent Rahli, and Ayberk Tosun. Inductive continuity
via brouwer trees. To appear in the proceedings of the 48th International Symposium on
Mathematical Foundations of Computer Science, 2023.

[CH96] M. J. Cresswell and G. E. Hughes. A New Introduction to Modal Logic. Routledge, 1996.
[CJ10] Thierry Coquand and Guilhem Jaber. A note on forcing and type theory. Fundam. Inform.,

100(1-4):43–52, 2010. doi:10.3233/FI-2010-262.
[CJ12] Thierry Coquand and Guilhem Jaber. A computational interpretation of forcing in type theory.

In Epistemology versus Ontology, volume 27 of Logic, Epistemology, and the Unity of Science,
pages 203–213. Springer, 2012. doi:10.1007/978-94-007-4435-6_10.

[CR22] Liron Cohen and Vincent Rahli. Constructing unprejudiced extensional type theories with
choices via modalities. In Amy P. Felty, editor, FSCD, volume 228 of LIPIcs, pages 10:1–10:23.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.FSCD.2022.10.

[CR23] Liron Cohen and Vincent Rahli. Realizing continuity using stateful computations. In Bartek Klin
and Elaine Pimentel, editors, CSL, volume 252 of LIPIcs, pages 15:1–15:18, Dagstuhl, Germany,
2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CSL.2023.15.

[Dum00] Michael A. E. Dummett. Elements of Intuitionism. Clarendon Press, second edition, 2000.
[Esc13a] Martín Hötzel Escardó, 2013. Internalisation of the modulus of continuity of System T function-

als. URL: https://www.cs.bham.ac.uk/~mhe/dialogue/church-dialogue-internal.html.
[Esc13b] Martín Hötzel Escardó. Continuity of Gödel’s system T definable functionals via effectful forcing.

Electr. Notes Theor. Comput. Sci., 298:119–141, 2013. doi:10.1016/j.entcs.2013.09.010.
[EX15] Martín H. Escardó and Chuangjie Xu. The inconsistency of a Brouwerian continuity principle

with the Curry-Howard interpretation. In TLCA, volume 38 of LIPIcs, pages 153–164. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. URL: http://www.dagstuhl.de/dagpub/
978-3-939897-87-3, doi:10.4230/LIPIcs.TLCA.2015.153.

[GHP06] Neil Ghani, Peter G. Hancock, and Dirk Pattinson. Continuous functions on final coalgebras.
In Neil Ghani and John Power, editors, CMCS, volume 164 of Electronic Notes in Theoretical
Computer Science, pages 141–155. Elsevier, 2006. doi:10.1016/j.entcs.2006.06.009.

[GHP09a] Neil Ghani, Peter G. Hancock, and Dirk Pattinson. Continuous functions on final coalgebras.
In Samson Abramsky, Michael W. Mislove, and Catuscia Palamidessi, editors, MFPS, volume
249 of Electronic Notes in Theoretical Computer Science, pages 3–18. Elsevier, 2009. doi:
10.1016/j.entcs.2009.07.081.

[GHP09b] Neil Ghani, Peter G. Hancock, and Dirk Pattinson. Representations of stream processors using
nested fixed points. Log. Methods Comput. Sci., 5(3), 2009. URL: http://arxiv.org/abs/
0905.4813.

[GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge University
Press, 1989.

[Kre62] Georg Kreisel. On weak completeness of intuitionistic predicate logic. J. Symb. Log., 27(2):139–
158, 1962. doi:10.2307/2964110.

https://doi.org/10.1007/978-3-319-08970-6_3
https://doi.org/10.4230/LIPIcs.CSL.2022.5
http://books.google.com/books?id=oN5nsPkXhhsC
http://books.google.com/books?id=oN5nsPkXhhsC
https://doi.org/10.3233/FI-2010-262
https://doi.org/10.1007/978-94-007-4435-6_10
https://doi.org/10.4230/LIPIcs.FSCD.2022.10
https://doi.org/10.4230/LIPIcs.CSL.2023.15
https://www.cs.bham.ac.uk/~mhe/dialogue/church-dialogue-internal.html
https://doi.org/10.1016/j.entcs.2013.09.010
http://www.dagstuhl.de/dagpub/978-3-939897-87-3
http://www.dagstuhl.de/dagpub/978-3-939897-87-3
https://doi.org/10.4230/LIPIcs.TLCA.2015.153
https://doi.org/10.1016/j.entcs.2006.06.009
https://doi.org/10.1016/j.entcs.2009.07.081
https://doi.org/10.1016/j.entcs.2009.07.081
http://arxiv.org/abs/0905.4813
http://arxiv.org/abs/0905.4813
https://doi.org/10.2307/2964110

18:24 L. Cohen and V. Rahli Vol. 20:2

[Kri63] Saul A. Kripke. Semantical analysis of modal logic i. normal propositional calculi. Zeitschrift
fur mathematische Logik und Grundlagen der Mathematik, 9(5-6):67–96, 1963. doi:10.1002/
malq.19630090502.

[Kri65] Saul A. Kripke. Semantical analysis of intuitionistic logic i. In J.N. Crossley and M.A.E.
Dummett, editors, Formal Systems and Recursive Functions, volume 40 of Studies in Logic and
the Foundations of Mathematics, pages 92–130. Elsevier, 1965. doi:10.1016/S0049-237X(08)
71685-9.

[KT70] Georg Kreisel and Anne S. Troelstra. Formal systems for some branches of intuitionistic analysis.
Annals of Mathematical Logic, 1(3):229–387, 1970. doi:10.1016/0003-4843(70)90001-X.

[KV65] Stephen C. Kleene and Richard E. Vesley. The Foundations of Intuitionistic Mathematics,
especially in relation to recursive functions. North-Holland Publishing Company, 1965.

[Lon99] John Longley. When is a functional program not a functional program? In ICFP, pages 1–7.
ACM, 1999. doi:10.1145/317636.317775.

[Mos93] Joan R. Moschovakis. An intuitionistic theory of lawlike, choice and lawless sequences. In Logic
Colloquium’90: ASL Summer Meeting in Helsinki, pages 191–209. Association for Symbolic
Logic, 1993.

[Pit13] Andrew M Pitts. Nominal sets: Names and symmetry in computer science, volume 57 of
cambridge tracts in theoretical computer science, 2013.

[PT17] Pierre-Marie Pédrot and Nicolas Tabareau. An effectful way to eliminate addiction to depen-
dence. In LICS, pages 1–12. IEEE Computer Society, 2017. URL: http://ieeexplore.ieee.
org/xpl/mostRecentIssue.jsp?punumber=7999337, doi:10.1109/LICS.2017.8005113.

[RB16] Vincent Rahli and Mark Bickford. A nominal exploration of intuitionism. In Jeremy Avi-
gad and Adam Chlipala, editors, CPP, pages 130–141. ACM, 2016. Extended version:
http://www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf. URL: http://dl.acm.org/
citation.cfm?id=2854065, doi:10.1145/2854065.2854077.

[RB17] Vincent Rahli and Mark Bickford. Validating brouwer’s continuity principle for numbers
using named exceptions. Mathematical Structures in Computer Science, pages 1–49, 2017.
doi:10.1017/S0960129517000172.

[Tro73] A.S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. New
York, Springer, 1973.

[Tro77a] Anne S. Troelstra. Choice sequences: a chapter of intuitionistic mathematics. Clarendon Press
Oxford, 1977.

[Tro77b] A.S. Troelstra. A note on non-extensional operations in connection with continuity and
recursiveness. Indagationes Mathematicae, 39(5):455–462, 1977. doi:10.1016/1385-7258(77)
90060-9.

[Tro85] Anne S. Troelstra. Choice sequences and informal rigour. Synthese, 62(2):217–227, 1985.
[TvD88] Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics An Introduction, volume

121 of Studies in Logic and the Foundations of Mathematics. Elsevier, 1988.
[vAvD02] Mark van Atten and Dirk van Dalen. Arguments for the continuity principle. Bulletin of Symbolic

Logic, 8(3):329–347, 2002. URL: http://www.math.ucla.edu/~asl/bsl/0803/0803-001.ps.
[Vel01] Wim Veldman. Understanding and using Brouwer’s continuity principle. In Reuniting the

Antipodes — Constructive and Nonstandard Views of the Continuum, volume 306 of Synthese
Library, pages 285–302. Springer Netherlands, 2001. doi:10.1007/978-94-015-9757-9_24.

[XE13] Chuangjie Xu and Martín Hötzel Escardó. A constructive model of uniform continuity. In TLCA,
volume 7941 of LNCS, pages 236–249. Springer, 2013. doi:10.1007/978-3-642-38946-7_18.

[Xu15] Chuangjie Xu. A continuous computational interpretation of type theories. PhD thesis, University
of Birmingham, UK, 2015. URL: http://etheses.bham.ac.uk/5967/.

[Xu20] Chuangjie Xu. A syntactic approach to continuity of t-definable functionals. Log. Methods
Comput. Sci., 16(1), 2020. doi:10.23638/LMCS-16(1:22)2020.

https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1016/S0049-237X(08)71685-9
https://doi.org/10.1016/S0049-237X(08)71685-9
https://doi.org/10.1016/0003-4843(70)90001-X
https://doi.org/10.1145/317636.317775
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7999337
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7999337
https://doi.org/10.1109/LICS.2017.8005113
http://www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf
http://dl.acm.org/citation.cfm?id=2854065
http://dl.acm.org/citation.cfm?id=2854065
https://doi.org/10.1145/2854065.2854077
https://doi.org/10.1017/S0960129517000172
https://doi.org/10.1016/1385-7258(77)90060-9
https://doi.org/10.1016/1385-7258(77)90060-9
http://www.math.ucla.edu/~asl/bsl/0803/0803-001.ps
https://doi.org/10.1007/978-94-015-9757-9_24
https://doi.org/10.1007/978-3-642-38946-7_18
http://etheses.bham.ac.uk/5967/
https://doi.org/10.23638/LMCS-16(1:22)2020

Vol. 20:2 TT□
C : A FAMILY OF EFFECTFUL, EXTENSIONAL TYPE THEORIES 18:25

Appendix A. Inference Rules

The following provides a sample of TT□
C ’s key inference rules. In what follows, we write a∈A

for a=a∈A. While similar rules had been formally verified in [AR14] for a precursor of TT□
C ,

the formal verification of the validity of these rules w.r.t. TT□
C ’s semantics is left for future

work.

Products. The following rules are the standard Π-elimination rule, Π-introduction rule,
type equality for Π types, and λ-introduction rule, respectively.

H , f :Πx:A.B, J ⊢ a∈A H , f :Πx:A.B, J , z:f(a)∈B[x\a] ⊢ e : C

H , f :Πx:A.B, J ⊢ e[z\⋆] : C
H , z:A ⊢ b : B[x\z] H ⊢ A∈Ui

H ⊢ λz.b : Πx:A.B

H ⊢ A1=A2∈Ui H , y:A1 ⊢ B1[x1\y]=B2[x2\y]∈Ui

H ⊢ Πx1:A1.B1=Πx2:A2.B2∈Ui

H , z:A ⊢ t1[x1\z]=t2[x2\z]∈B[x\z] H ⊢ A∈Ui

H ⊢ λx1.t1=λx2.t2∈Πx:A.B

Note that the last rule requires to prove that A is a type because the conclusion requires to
prove that Πx:A.B is a type, and the first hypothesis only states that B is a type family
over A, but does not ensures that A is a type. Furthermore, the following rules are the
standard function extensionality and β-computation rules, respectively:

H , z:A ⊢ f1(z)=f2(z)∈B[x\z] H ⊢ A∈Ui

H ⊢ f1=f2∈Πx:A.B

H ⊢ t[x\s]=u∈T
H ⊢ (λx.t) s=u∈T

Sums. The following rules are the standard Σ-elimination rule, Σ-introduction rule, type
equality for the Σ type, pair-introduction, and spread-computation rules, respectively:

H , p:|Σx:A.B|rw, a:A, b:B[x\a], J [p\⟨a, b⟩] ⊢ e : C[p\⟨a, b⟩]
H , p:|Σx:A.B|rw, J ⊢ let a, b = p in e : C

H ⊢ a∈A H ⊢ b∈B[x\a] H , z:A ⊢ B[x\z]∈Ui

H ⊢ ⟨a, b⟩ : Σx:A.B

H ⊢ A1=A2∈Ui H , y:A1 ⊢ B1[x1\y]=B2[x2\y]∈Ui

H ⊢ Σx1:A1.B1=Σx2:A2.B2∈Ui

H , z:A ⊢ B[x\z]∈Ui H ⊢ a1=a2∈A H ⊢ b1=b2∈B[x\a1]
H ⊢ ⟨a1, b1⟩=⟨a2, b2⟩∈Σx:A.B

H ⊢ u[x\s; y\t]=t2∈T
H ⊢ let x, y = ⟨s, t⟩ in u=t2∈T

Disjoint Unions. The following rules are the disjoint union-elimination, disjoint union-
introduction (left and right), type equality for disjoint unions, injection-introduction (left
and right), and decide-computation (left and right) rules, respectively:

H , d:|A+B|rw, x:A, J [d\inl(x)] ⊢ t : C[d\inl(x)] H , d:|A+B|rw, y:B, J [d\inr(y)] ⊢ u : C[d\inr(y)]

H , d:|A+B|rw, J ⊢ case d of inl(x) ⇒ t | inr(y) ⇒ u : C

H ⊢ a : A H ⊢ B∈Ui

H ⊢ inl(a) : A+B

H ⊢ b : B H ⊢ A∈Ui

H ⊢ inr(b) : A+B

H ⊢ A1=A2∈Ui H ⊢ B1=B2∈Ui

H ⊢ A1+B1=A2+B2∈Ui

H ⊢ a1=a2∈A H ⊢ B∈Ui

H ⊢ inl(a1)=inl(a2)∈A+B

H ⊢ b1=b2∈B H ⊢ A∈Ui

H ⊢ inr(b1)=inr(b2)∈A+B

H ⊢ t[x\s]=t2∈T
H ⊢ (case inl(s) of inl(x) ⇒ t | inr(y) ⇒ u)=t2∈T

H ⊢ u[y\s]=t2∈T
H ⊢ (case inr(s) of inl(x) ⇒ t | inr(y) ⇒ u)=t2∈T

18:26 L. Cohen and V. Rahli Vol. 20:2

Equality. The following rules are the standard equality-introduction rule, equality-elimination
rule, hypothesis rule, symmetry and transitivity rules, respectively.

H ⊢ A=B∈Ui H ⊢ a1=b1∈A H ⊢ a2=b2∈A
H ⊢ (a1=a2∈A)=(b1=b2∈B)∈Ui

H , z:a=b∈A, J [z\⋆] ⊢ e : C[z\⋆]
H , z:a=b∈A, J ⊢ e : C

H , x:A, J ⊢ x∈A
H ⊢ b=a∈T
H ⊢ a=b∈T

H ⊢ a=c∈T H ⊢ c=b∈T
H ⊢ a=b∈T

The following rules allow fixing the realizer of a sequent, and rewriting with an equality
in an hypothesis, respectively:

H ⊢ t : T
H ⊢ t∈T

H , x:B, J ⊢ t : C H ⊢ A=B∈Ui

H , x:A, J ⊢ t : C

Universes. Let i be a lower universe than j. The following rules are the standard universe-
introduction rule and the universe cumulativity rule, respectively.

H ⊢ Ui=Ui∈Uj

H ⊢ T∈Ui

H ⊢ T∈Uj

Sets. The following rule is the standard set-elimination rule:
H , z:{x : A | B}, a:A, b:B[x\a] , J [z\a] ⊢ e : C[z\a]

H , z:{x : A | B}, J ⊢ e[a\z] : C

Note that we have used a new construct in the above rule: the hidden hypothesis b:B[x\a] .
The main feature of hidden hypotheses is that their names cannot occur in realizers (which
is why we “box” those hypotheses). Intuitively, this is because the proof that B is true is
discarded in the proof that the set type {x : A | B} is true and therefore cannot occur in
computations. Hidden hypotheses can be unhidden using the following rule:

H , x:T, J ⊢ ⋆ : a=b∈A
H , x:T , J ⊢ ⋆ : a=b∈A

which is valid since the realizer is ⋆ and therefore does not make use of x.
The following rules are the standard set-introduction rule, type equality for the set type,

and introduction rule for members of set types, respectively.
H ⊢ a∈A H ⊢ B[x\a] H , z:A ⊢ B[x\z]∈Ui

H ⊢ a : {x : A | B}
H ⊢ A1=A2∈Ui H , y:A1 ⊢ B1[x1\y]=B2[x2\y]∈Ui

H ⊢ {x1 : A1 | B1}={x2 : A2 | B2}∈Ui

H , z:A ⊢ B[x\z]∈Ui H ⊢ a=b∈A H ⊢ B[x\a]
H ⊢ a=b∈{x : A | B}

Intersection. The following rules are the intersection elimination and introduction rules:
H , x:A ∩B, y:A, z:y=x∈A, J [x\y] ⊢ t : C[x\y]

H , x:A ∩B, J ⊢ t[y\x][z\⋆] : C
H , x:A ∩B, y:B, z:y=x∈B, J [x\y] ⊢ t : C[x\y]

H , x:A ∩B, J ⊢ t[y\x][z\⋆] : C

H ⊢ t : A H ⊢ t : b
H ⊢ t : A ∩B

H ⊢ A1=A2∈Ui H ⊢ B1=B2∈Ui

H ⊢ A1 ∩B1=A2 ∩B2∈Ui

H ⊢ t1=t2∈A H ⊢ t1=t2∈B
H ⊢ t1=t2∈A ∩B

Subsingleton. The following rules are the subsingleton elimination and introduction rules:
H , x:∥A∥, J ⊢ T∈Ui H , x:∥A∥, J , y:A, z:A ⊢ t[x\y]=u[x\z]∈T

H , x:∥A∥, J ⊢ t=u∈T

H ⊢ t : A

H ⊢ t : ∥A∥
H ⊢ A1=A2∈Ui

H ⊢ ∥A1∥=∥A2∥∈Ui

H ⊢ t1∈A H ⊢ t2∈B
H ⊢ t1=t2∈∥A∥

Vol. 20:2 TT□
C : A FAMILY OF EFFECTFUL, EXTENSIONAL TYPE THEORIES 18:27

Natural Numbers. The following rules are the rules for Nat:
H , x:|Nat|rw, J ⊢ b : C[x\0] H , x:|Nat|rw, J , y:|Nat|rw, r:C[x\y] ⊢ s : C[x\succ(y)]

H , x:|Nat|rw, J ⊢ natrec(x, b, λy.λr.s) : C

H ⊢ n : Nat H ⊢ Nat=Nat∈Ui H ⊢ n=n∈Nat
H ⊢ t=u∈Nat

H ⊢ succ(t)=succ(u)∈Nat

Effect Restrictions. The following rules are the rules for NoWrite, NoRead, Pure:
readfree(t)

H ⊢ t : NoWrite

writefree(t)

H ⊢ t : NoRead

namefree(t)

H ⊢ t : Pure

writefree(t1) writefree(t2)

H ⊢ t1=t2∈NoWrite
readfree(t1) readfree(t2)

H ⊢ t1=t2∈NoRead
namefree(t1) namefree(t2)

H ⊢ t1=t2∈Pure

H ⊢ NoWrite=NoWrite∈Ui H ⊢ NoRead=NoRead∈Ui H ⊢ Pure=Pure∈Ui

Note that all these rules require syntactic checks, where namefree(t) states that no expression
of the form δ or νx.t1 occurs in t; writefree(t) states that no expression of the form t1 := t2
or νx.t1 occurs in t; and readfree(t) states that no expression of the form !t1 occurs in t.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. BoxTT : Syntax & Semantics
	2.1. Metatheory
	2.2. Worlds
	2.3. BoxTT's Syntax and Operational Semantics
	2.4. Forcing Interpretation
	2.5. Different Levels of Effects
	2.6. Inference Rules

	3. Principles (In)Compatible with BoxTT
	4. Proof of Continuity
	4.1. Purity
	4.2. Assumptions
	4.3. The Modulus is a Number
	4.4. The Modulus is the Highest Number
	4.5. The Modulus as a Modulus

	5. Conclusion and Related Works
	References
	Appendix A. Inference Rules

