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Abstract. In [3] a general logical framework for formalizing set theories
of different strength was suggested. We here employ that framework,
focusing on the exploration of computational theories. That is, theories
whose set of closed terms suffices for denoting every concrete set (includ-
ing infinite ones) that might be needed in applications, as well as for
computations with sets. We demonstrate that already the minimal com-
putational level of the framework, in which only a minimal computational
theory and a minimal computational universe are employed, suffices for
most, if not all, of applicable mathematics.

1 Introduction

Formalized mathematics and mathematical knowledge management (MKM) are
extremely fruitful and quickly expanding fields of research at the intersection
of mathematics and computer science (see, e.g., [2,8,21]). The declared goal
of these fields is to develop computerized systems that effectively represent
all important mathematical knowledge and techniques, while conforming to
the highest standards of mathematical rigor. At present there is no general
agreement what should be the best framework for this task. However, since
most mathematicians view set theory as the basic foundation of mathematics,
formalized set theories seem to us as the most natural choice.3 4

In [3,4] a logical framework for developing and mechanizing set theories was
introduced. Its key properties are that it is based on the usual (type-free) set
theoretic language and makes extensive use of statically defined abstract set

3 Already in [9] it was argued that “a main asset gained from Set theory is the ability
to base reasoning on just a handful of axiom schemes which, in addition to being
conceptually simple (even though surprisingly expressive), lend themselves to good
automated support”. More recently, H. Friedman wrote (in a message on FOM on
Sep 14, 2015): “I envision a large system and various important weaker subsystems.
Since so much math can be done in systems much weaker than ZFC, this should
be reflected in the choice of Gold Standards. There should be a few major Gold
Standards ranging from Finite Set Theory to full blown ZFC”.

4 Notable set-based automated provers are Mizar [27], Metamath [23] and SETL [28].



terms. Furthermore, it enables the use of different logics and set theories of
different strength. This modularity of the system has been exploited in [5], where
a hierarchy of set theories for formalizing different levels of mathematics within
this framework was presented.

The current paper concentrates on one very basic theory, RSTFOL
HF , from

the above-mentioned hierarchy, and on its minimal model. The latter is shown
to be the universe J2 in Jensen’s hierarchy [20]. Both RSTFOL

HF and J2 are
computational (in a precise sense defined below). With the help of the formal
framework of [3,4,5] they can therefore be used to make explicit the potential
computational content of set theories (first suggested and partially demonstrated
in [9]). On the other hand, they also suffice (as we show) for developing large
portions of scientifically applicable mathematics [15], especially analysis.5

The restriction to a minimal, concrete framework has of course its price. Not
all standard mathematical structures are elements of J2. (The real line is a case
in point.) Hence we have to treat such objects in a different manner: as proper
classes. Accordingly, in this paper we introduce for the first time classes into the
formal framework of [3,4,5], and develop efficient ways for handling them.

The paper is organized as follows: In Section 2 we present the formal frame-
work, define the notions of computational theory and universe, and describe
the computational theories which are minimal within the framework. Section
3 is dedicated to the introduction of standard extensions by definitions of the
framework, done in a static way. We define the notions of sets and classes in
our framework, and describe the way standard set theoretical notions are dealt
with in the system. In Section 4 we turn to real analysis, and demonstrate how it
can be developed in our minimal computational framework, although the reals
are a proper class in it. This includes the introduction of the real line and real
functions, as well as formulating and proving classical results concerning these
notions.6 Section 5 concludes with directions for future continuation of the work.
Due to lack of space, all proofs were omitted and are given in the appendix.

2 Preliminaries

2.1 The Framework

Notation. To avoid confusion, the parentheses {◦ ◦} are used in our formal languages,
while in the meta-language we use { }. We use the letters X,Y, Z, ... for collections;
Φ,Θ for finite sets of variables; and x, y, z, ... for variables in the formal language.
Fv(exp) denotes the set of free variables of exp, and ϕ

{
t1
x1
, ..., tn

xn

}
denotes the

result of simultaneously substituting ti for xi in ϕ.

Definition 1 Let C be a finite set of constants. The language LC
RST and the

associated safety relation � are simultaneously defined as follows:
5 The thesis that J2 is sufficient for core mathematics was already put forward in [31].
6 A few of the claims in Section 4 have counterparts in [5]. The main difference is that
in this paper the claims and their proofs have to be modified to handle classes.
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– Terms:
• Every variable is a term.
• Every c ∈ C is a term (taken to be a constant).
• If x is a variable and ϕ is a formula such that ϕ � {x}, then {◦x | ϕ◦} is a
term (Fv ({◦x | ϕ◦}) = Fv (ϕ)− {x}).

– Formulas:
• If s, t are terms, then t = s, t ∈ s are atomic formulas.
• If ϕ,ψ are formulas and x is a variable, then ¬ϕ, (ϕ ∧ ψ) , (ϕ ∨ ψ), ∃xϕ
are formulas.7

– The safety relation �:
• If ϕ is an atomic formula, then ϕ � ∅.
• If t is a term such that x /∈ Fv (t), and ϕ ∈ {x ∈ x, x ∈ t, x = t, t = x},
then ϕ � {x}.
• If ϕ � ∅, then ¬ϕ � ∅.
• If ϕ � Θ and ψ � Θ, then ϕ ∨ ψ � Θ.
• If ϕ � Θ, ψ � Φ and Φ∩Fv (ϕ) = ∅ or Θ∩Fv (ψ) = ∅, then ϕ∧ψ � Θ∪Φ.
• If ϕ � Θ and y ∈ Θ, then ∃yϕ � Θ − {y}.

Notation. We take the usual definition of ⊆ in terms of ∈, according to which
t ⊆ s � ∅. {◦t◦} denotes the term {◦x | x = t◦}, and s∪ t the term {◦x | x ∈ s∨ x ∈ t◦}.

Definition 2 The system RSTFOL
C is the classical first-order system with vari-

able binding term operator (vbto; see, e.g., [13]) in LC
RST which is based on the

following set of axioms: 8

– Extensionality: ∀z (z ∈ x↔ z ∈ y)→ x = y
– Comprehension Schema: ∀x (x ∈ {◦x | ϕ◦} ↔ ϕ)
– Restricted ∈-induction Schema:(

∀x
(
∀y
(
y ∈ x→ ϕ

{y
x

})
→ ϕ

))
→ ∀xϕ , for ϕ � ∅

In case HF ∈ C, the following axioms are added:
– ∅ ∈ HF (where ∅ = {◦x ∈ HF | x 6= x◦})
– ∀x∀y (x ∈ HF ∧ y ∈ HF → x ∪ {◦y◦} ∈ HF )
– ∀y (∅ ∈ y ∧ ∀v, w ∈ y.v ∪ {◦w◦} ∈ y → HF ⊆ y)

Notation. In what follows, in case C = ∅ we elide C from our notations (e.g., we
write RSTFOL for RSTFOL

∅ ). Also, if C = {HF} we simply write RSTFOL
HF .

An important feature of RSTFOL
C is that its first two axioms directly lead

(and are equivalent) to the set-theoretical β and η reduction rules (see [3]).
In [3] it was suggested that the computationally meaningful instances of the

Comprehension Axiom are those which determine the collections they define in an
absolute way, independently of any “surrounding universe”. In the context of set
theory, a formula ϕ is “computable” w.r.t. x if the collection {x | ϕ (x, y1, ..., yn)}
7 Though the official language does not include ∀ and →, since we assume classical
logic we take ∀x1...∀xn (ϕ→ ψ) as an abbreviation for ¬∃x1...∃xn (ϕ ∧ ¬ψ).

8 RSTFOL can be shown to be equivalent to the system obtained from Gandy’s basic
set theory [18] by adding to it the Restricted ∈-induction schema.
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is completely and uniquely determined by the identity of the parameters y1, ..., yn,
and the identity of other objects referred to in the formula (all of which are
well-determined beforehand). Note that ϕ is computable for ∅ iff it is absolute
in the usual sense of set theory. In order to translate this idea into an exact,
syntactic definition, the safety relation is used. Thus, only those formulas which
are safe with respect to {x} are allowed in the Comprehension Scheme.

Concerning ∈-induction, even the full one does not seem to be in any conflict
with the notion of a computational theory since it only imposes further restrictions
on the collection of acceptable sets. Nevertheless, to be on the safe side, we adopt
here only a very restricted variation of it. Moreover, we try to avoid (when
possible) the use of this axiom, and shall point out the places where it is used.

It is easy to verify that the system RSTFOL
C is a proper subsystem of ZF .

On the other hand, in [3] it was shown that the full power of ZF can be achieved
by simply adding certain syntactic clauses to the definition of the safety relation.

While the formal language allows the use of set terms, it also provides a
mechanizable static check of their validity due to the syntactic safety relation.
To obtain decidable syntax logically equivalent formulas are not taken to be safe
w.r.t. the same set of variables. However, if ϕ↔ ψ is provable in RSTFOL

C , then
so is x ∈ {◦x | ϕ◦} ↔ ψ. Thus, we freely write {◦x | ψ◦} for of {◦x | ϕ◦} for such ϕ,ψ.

Definition 3 Let C be a set of constants.
1. A function is called C-rudimentary if it rudimentary relative to the interpre-

tations of the constants in C. 9

2. A C-universe is a transitive collection of sets closed under C-rudimentary
functions.

For simplicity, in what follows we do not distinguish between a C-universe W
and a structure for LC

RST with domain W and an interpretation function I that
assigns the obvious interpretations to the symbols ∈, =, the set of hereditary
finite sets to HF (if HF ∈ C), and an element in W to every c ∈ C.

Definition 4 Let v be an assignment in a C-universe W . For a term t and for-
mula ϕ of LC

RST , a collection ‖t‖Wv and a truth value ‖ϕ‖Wv ∈ {t, f} are standardly
defined, with the additional clause: ‖{◦x | ϕ◦}‖Wv =

{
a ∈W | ‖ϕ‖Wv[x:=a] = t

}
.10

From Corollary 6 below it follows that ‖t‖Wv is an element of W , and ‖ϕ‖Wv
denotes the truth value of the formula ϕ under W and v.
Notation. In case exp is a closed expression, we denote by ‖exp‖W the value of
exp in W , and at times we omit the superscript W and simply write ‖exp‖.

The following theorem is a slight generalization of a theorem in [4].

Theorem 5 Let C be a set of constants.
1. If F is an n-ary C-rudimentary function, then there exists a formula ϕF of
LC
RST s.t. Fv (ϕF ) ⊆ {y, x1, ..., xn}, ϕF � {y} and F (x1, ..., xn) = {y | ϕF }.

9 Rudimentary functions are obtained by omitting the recursion schema from the usual
list of schemata for primitive recursive set functions (see, e.g., [14]).

10 v [x := a] denotes the x-variant of v which assigns a to x.
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2. If ϕ is a formula of LC
RST s.t. Fv (ϕ) ⊆ {y1, ..., yk, x1, ..., xn} and ϕ �

{y1, ..., yk}, then there exists a C-rudimentary function Fϕ s.t. Fϕ (x1, ..., xn) =
{〈y1, ..., yk〉 | ϕ}.

3. If t is a term of LC
RST s.t. Fv (t) ⊆ {x1, ..., xn}, then there exists a C-

rudimentary function Ft s.t. Ft (x1, ..., xn) = t for every x1, ..., xn.

Corollary 6 Let v be an assignment in a C-universe W .
1. For a term t of LC

RST , ‖t‖
W
v ∈W .

2. For a formula ϕ of LC
RST s.t. {y1, ..., yn} ⊆ Fv (ϕ):

(a) If ϕ � {y1, ..., yn} (n > 0),
{
〈a1, ..., an〉 ∈Wn | ‖ϕ‖Wv[y:=−→a ] = t

}
∈W .

(b) If ϕ � ∅ and X ∈W , then
{
〈a1, ..., an〉 ∈ Xn | ‖ϕ‖Wv[y:=−→a ] = t

}
∈W .

If t is a closed term s.t. ‖t‖W = X, we say that t defines X (X is definable by t).

Corollary 7 Any C-universe is a model of RSTFOL
C .

Lemma 8 [5] The following notations are available in RSTFOL (i.e. they can
be introduced as abbreviations in LRST and their basic properties are provable in
RSTFOL): ∅, 〈t1, ..., tn〉 , {◦t1, ..., tn◦}, {◦x ∈ t | ϕ◦} (provided ϕ � ∅ and x /∈ Fv (t)),
{◦t | x ∈ s◦} (provided x /∈ Fv (s)), s × t, s ∪ t, s ∩ t, s − t, ∪t, ∩t, π1 (t) , π2 (t),
Dom (t) , Im (t), ιx.ϕ (provided ϕ � {x}), λx ∈ s.t (provided x /∈ Fv (s)).

2.2 Computational Theories and Universes

Computations within a set of objects require concrete representations of these
objects. Accordingly, we call a theory computational if its set of closed terms
induces in a natural way a minimal model of the theory, and it enables the key
properties of these elements to be provable within it. Next we provide a more
formal definition for the case of set theories which are defined within our general
framework. Note that from a Platonist point of view, the set of closed terms of
such a theory T induces some subset ST of the cumulative universe of sets V , as
well as some subsetMT of any transitive modelM of T .

Definition 9

1. A theory T in the above framework is called computational if the set ST it
induces is a transitive model of T , and the identity of ST is absolute in the
sense thatMT = ST for any transitive modelM of T (implying that ST is
actually a minimal transitive model of T ).

2. A set is called computational if it is ST for some computational theory T .

The most basic computational theories are the two minimal theories in the
hierarchy of systems developed in [5]. This fact, as well as the corresponding
computational universes, are described in the following three results from [5].

Proposition 10 Let J1, J2 be the first two universes in Jensen’s hierarchy [20].
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1. J1 is a model of RSTFOL.
2. J2 with the interpretation of HF as J1 is a model of RSTFOL

HF .

Theorem 11
– X ∈ J1 iff there is a closed term t of LRST s.t. ‖t‖J1 = X.
– X ∈ J2 iff there is a closed term t of LHF

RST such that ‖t‖J2 = X.

Corollary 12 RSTFOL and RSTFOL
HF are computational, and J1 and J2 are

their computational universes.

Now J1, the minimal computational universe, is the set of hereditary finite sets.
This universe captures the standard data structures used in computer science, like
strings and lists. However, in order to be able to capture computational structures
with infinite objects, we have to move to RSTFOL

HF , whose computational universe,
J2, seems to be the minimal universe that suffices for this purpose. RSTFOL

HF

still allows for a very concrete, computationally-oriented interpretation, and it
is appropriate for mechanical manipulations and interactive theorem proving.
Moreover, as noted in the introduction, its corresponding universe J2 is rich
enough for a systematic development of applicable mathematics.

3 Static Extensions by Definitions

When working in a minimal computational universe such as J2 (as done in the
next section), many of the standard mathematical objects (such as the real line
and real functions) are only available in our framework as proper classes. Thus, in
order to be able to formalize standard theorems regarding such objects we must
enrich our language to include them. Introducing classes into our framework,
however, is a part of the more general method of extensions by definitions which is
an essential part of every mathematical research and its presentation. Now, there
are two principles that govern this process in our framework. First, the static
nature of our framework demands that conservatively expanding the language
of a given theory should be reduced to the use of abbreviations. Second, since
the introduction of new predicates and function symbols creates new atomic
formulas and terms, one should be careful that the basic conditions concerning
the underlying safety relation � are preserved. Thus only formulas ϕ s.t. ϕ � ∅
can be used for defining new predicate symbols.

We start with the problem of introducing new unary predicate symbols.11 In
standard practice such extensions are carried out by introducing a new unary
predicate symbol P and either treating P (t) as an abbreviation for ϕ (t) for some
formula ϕ, or (what is more practical) adding ∀x (P (x)↔ ϕ) as an axiom to the
(current version of the base) theory, obtaining by this a conservative theory in the
extended language. However, in the set theoretical framework it is possible and
frequently more convenient to uniformly use class terms, rather than introduce
a new predicate symbol each time. Thus, instead of writing “P (t)” one uses
11 The use of n-ary predicates can standardly be reduced, of course, to unary predicates.
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an appropriate class term S and writes “t ∈ S”. Whatever approach is chosen
– in order to respect the definition of a safety relation, class terms should be
restricted so that “t ∈ S” is safe w.r.t. ∅. Accordingly, we extend our language
by incorporating class terms which are objects of the form {◦x |̂ϕ◦}, where ϕ � ∅.
The use of these terms is done in the standard way. In particular, t ∈ {◦x |̂ϕ◦}
(where t is free for x in ϕ) is equivalent to (and may be taken as an abbreviation
for) ϕ

{
t
x

}
. It should be emphasized that a class term is not a valid term in the

language, only a definable predicate. The addition of the new notation does not
enhance the expressive power of LC

RST , but only increases the ease of using it.
A further conservative extension of the language that we shall use incorporates

free class variables, X,Y ,Z, and free function variables, F ,G, into LC
RST (as in

free-variable second-order logic [29]). These variables stand for arbitrary class
or function terms (the latter is defined in Def. 20), and they may only appear
as free variables, never to be quantified. We allow occurrences of such variables
inside a formula in a class term or a function term. One may think of a formula
with such variables as a schema, where the variables play the role of “place
holders”, and whose substitution instances abbreviate official formulas of the
language (see Example 2). In effect, a formula ψ (X) with free class variable X
can be intuitively interpreted as “for any given class X, ψ (X) holds”. Thus, a
free-variable formulation has the flavor of a universal formula. Therefore, this
addition allows statements about all potential classes and all potential functions.

We define
∥∥∥{◦x |̂ϕ◦}∥∥∥W

v
=
{
a ∈W | ‖ϕ‖Wv[x:=a] = t

}
. We say that the class

term defines the latter collection (which might not be an element of W ).

Definition 13 Let X be a collection of elements in W .
– X is a �-set if there is a closed term that defines it. If X is a �-set, X̃
denotes some closed term that defines it.

– X is a �-class if there is a closed class term that defines it. If X is a �-class,
X̄ denotes some closed class term that defines it.

Note that, by Corollary 6, if X is a �-set then X ∈W .

Proposition 14 The following holds:
1. Every �-set is a �-class.
2. The intersection of a �-class with a �-set is a �-set.
3. Every �-class that is contained in a �-set is a �-set.

Remark 15 A semantic counterpart of our notion of a �-class was used in [31],
and is there called an ι-class. It is defined as a definable subset of J2 whose
intersection with any element of J2 is in J2. The second condition in this definition
seems somewhat ad hoc. More importantly, it is unclear how it can be checked in
general, and what kind of set theory is needed to establish that certain collections
are ι-classes. The definition of a �-class used here is, in contrast, motivated by
and based on purely syntactical considerations. It is also a simplification of the
notion of ι-class as by Prop. 14(2) every �-class is an ι-class.12
12 Two other ideas that appear in the sequel were adopted from [31]: treating the

collection of reals as a proper class, and the use of codes for handling certain classes.
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Proposition 16 The following holds:
– Let Y be a �-set. If ϕ � ∅ and Fv (ϕ) ⊆ {x}, then {x ∈ Y | ϕ} is a �-set.
– If ϕ � {x1, ..., xn}, then {〈x1, ..., xn〉 | ϕ} is a �-set.

Proposition 17 For every n-ary C-rudimentary function f there is a term t
with Fv (t) ⊆ {x1, ..., xn} s.t. for any 〈A1, ..., An〉 ∈ Wn, f returns the �-set
‖t‖W[x1:=A1,...,xn:=An]

.

Proposition 18 If X,Y are �-classes, so are X ∪ Y , X ∩ Y , X × Y , J2 −X,
and PJ2

(X) = {z ∈ J2 | z ⊆ X}.

For a class term s we denote by 2s the class term {◦z |̂ z ⊆ s◦}. Note that for
any assignment v in W and class term s, ‖2s‖Wv is equal to PW

(
‖s‖Wv

)
, i.e.,

the intersection of the power set of ‖s‖Wv and W . This demonstrates the main
difference between set terms and class terms. The interpretation of set terms
is absolute, whereas the interpretation of class terms might not be (though
membership in the interpretation of a class term is absolute).

Definition 19 A �-relation from a �-class X to a �-class Y is a �-class A
s.t. A ⊆ X × Y . A �-relation is called small if it is a �-set.

Next we extend our framework by the introduction of new function symbols. This
poses a new difficulty. While new relation symbols are commonly introduced in
a static way, new function symbols are usually introduced dynamically : a new
function symbol is made available after appropriate existence and uniqueness
theorems had been proven. However, one of the main guiding principles of our
framework is that its languages should be treated exclusively in a static way.
Thus function symbols, too, are introduced only as abbreviations for definable
operations on sets.13

Definition 20
– For a closed class term T and a term t of LC

RST , λx ∈ T.t is a function term
which is an abbreviation for {◦z |̂ ∃x∃y (z=̌ 〈x, y〉 ∧ x ∈ T ∧ y = t) ◦}.14

– A �-class F is called a �-function on a �-class X if there is a function term
λx ∈ T.t such that X = ‖T‖, Fv (t) ⊆ {x} and F = ‖λx ∈ T.t‖. t is called a
term which represents F .

– A �-class is called a �-function if it is a �-function on some �-class.
– A �-function is called small if it is a �-set.

It should nevertheless be emphasized that the framework in [31] is exclusively based
on semantical considerations, and it is unclear how it can be turned into a formal
theory like ZF or PA (and it is certainly not suitable for mechanization as is).

13 In this paper, as in standard mathematical textbooks, the term “function” is used
both for collections of ordered pairs and for set-theoretical operations (such as ∪).

14 We abbreviate by z=̌ 〈x, y〉 and 〈x, y〉 ∈̌z the two formulas that are provably equivalent
to z = 〈x, y〉 and 〈x, y〉 ∈ z and are safe w.r.t. {x, y} which were introduced in [5].
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Note that the standard functionality condition is always satisfied in a �-function.
Terminology. In what follows, claiming that an object is available in RSTFOL

C as
a �-function (�-relation) means that it is definable as a �-function (�-relation)
in LC

RST , and that its basic properties are provable in RSTFOL
C .15

Proposition 21 Let X,Y be �-classes and R a �-relation from X to Y .
1. R is small iff Dom (R) and Im (R) are �-sets.
2. R−1 = {〈y, x〉 | 〈x, y〉 ∈ R} is available in RSTFOL

C as a �-relation from Y
to X. If R is small, then so is R−1.

3. If Z ⊆ X and U ⊆ Y are �-classes, then R∩(Z × U) is available in RSTFOL
C

as a �-relation from Z to U .

Proposition 22 A �-set is a function according to the standard mathematical
definition (a single-valued relation) iff it is a small �-function.

Notation. Let F =
∥∥λx ∈ X̄.t∥∥ be a �-function. We employ standard β-reduction

for λ terms. Thus, we write F (s) for t
{

s
x

}
if s is free for x in t. Hence F (s) = y

stands for t
{

s
x

}
= y, and so if y /∈ Fv [t] ∪ Fv [s] \ {x}, then F (s) = y � {y}.

Proposition 23 (Replacement axiom in class form) Let F be a �-function
on a �-class X. Then for every �-set A ⊆ X, F [A] = {F (a) | a ∈ A} is a �-set.

Below is a natural generalization of Def. 20 to functions of several variables.

Lemma 24 If X1, ..., Xn are �-classes and t is a term s.t. Fv (t) ⊆ {x1, ..., xn},
then F =

∥∥λx1 ∈ X̄1, ..., xn ∈ X̄n.t
∥∥ is available in RSTFOL

C as a �-function
on X1 × ... × Xn. (where λx1 ∈ X̄1, ..., xn ∈ X̄n.t is an abbreviation for
{◦ 〈〈x1, ..., xn〉 , t〉 |̂ 〈x1, ..., xn〉 ∈ X̄1 × ...× X̄n◦}).

Corollary 25 Every C-rudimentary function is available in RSTFOL
C as a �-

function.

Proposition 26 Let F be a �-function on a �-class X.
1. F is small iff X is a �-set.
2. If Y0 is a �-class, then F−1 [Y0] = {a ∈ X | F (a) ∈ Y0} is a �-class. If F

is small, then F−1 [Y0] is a �-set.
3. If X0 ⊆ X is a �-class, then F �X0

is available in RSTFOL
C as a �-function.

4. G◦F is available in RSTFOL
C as a �-function on X, in case G is a �-function

on a �-class Y and Im(F ) ⊆ Y .
5. If G is a �-function on a �-class Y and F and G agree on X ∩ Y , then

G ∪ F is available in RSTFOL
C as a �-function on X ∪ Y .

6. If Z is a �-class then the identity on Z and any constant function on Z are
available in RSTFOL

C as �-functions.
15 The “basic properties” of a certain object is of course a fuzzy notion. However, it is

not difficult to identify its meaning in each particular case, as will be demonstrated
in several examples below.
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4 Real Analysis in J2

It is not difficult to formalize the definitions, claims, and proofs of this section in
our formal framework. These translations are straightforward, but rather tedious.
Hence we shall omit them, with the exception of a few outlined examples.

4.1 The Natural Numbers

We follow the standard construction of the natural numbers: 0 := ∅; n+ 1 :=
S (n), where S (n) = n ∪ {n}. Each n ∈ N is a �-set, and N (the set of natural
numbers) is contained in the interpretation of HF .

In mainstream mathematics, as well as in standard computerized theorem
provers, the collection of natural numbers is taken as a basic object. This is because
it constitutes a well-understood, computational concept. Now, the computational
universe associated with RSTFOL is J1, in which N is available only as a proper
�-class. To solve this, in RSTFOL

HF a special constant HF was added, whose
axioms ensure (as far as possible on the first-order level) that it is to be interpreted
as the set of hereditary finite sets. These axioms in fact replace the usual infinity
axiom of ZF . This increases the computational power of the theory and captures
the natural numbers as a �-set. Thus, in what follows we restrict our attention to
the computational theory RSTFOL

HF and its computational universe J2. Therefore,
for readability, we simply write ‖exp‖v instead of ‖exp‖J2

v .
The induction rule is available in RSTFOL

HF , but only for ϕ � ∅.

Proposition 27 `RSTFOL
HF

(ϕ (0) ∧ ∀x (ϕ→ ϕ (S (x))))→ ∀x ∈ Ñ.ϕ, for ϕ � ∅.

Basic properties of the natural numbers which can be formulated in the language
of first-order Peano arithmetics are provable in RSTFOL

HF using the restricted
induction principle given in Prop. 27. This is because in their translation to
LHF
RST , all the quantifications are bounded in N, and thus they are safe w.r.t. ∅. 16

4.2 The Real Line

The standard construction of Z, the set of integers, as the set of ordered pairs
(N× {0}) ∪ ({0} × N) can be easily carried out in RSTFOL

HF , as can the usual
construction of Q, the set of rationals, in terms of ordered pairs of relatively
prime integers. There is also no difficulty in defining the standard orderings
on Z and Q as small �-relations, as well as the standard functions of addition
and multiplication as small �-functions. The main properties of addition and
multiplication are provable in RSTFOL

HF , as the standard proofs by induction can
be carried out within it. Furthermore, all the basic properties of Z and Q (such
as Q being a dense unbounded field) are straightforwardly proven in RSTFOL

HF .
Now we turn to the standard construction of the real line using Dedekind

cuts. Since it is well known that the real line and its open segments are not
16 It can be shown that the power of full induction over N (i.e. for any formula ϕ) can

be achieved by adding to RSTFOL
HF the full ∈-induction scheme.
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absolute, they cannot be �-sets, only proper �-classes. Thus the collection of
real numbers in RSTFOL

HF will not be a term but merely a definable predicate.17

Let ψ (u) = ∀x, y ∈ Q̃.x ∈ u ∧ y < x→ y ∈ u, ϕ (u) = ¬∃x ∈ u∀y ∈ u.y ≤ x.

Definition 28 (The Reals) R is
∥∥∥{◦u ∈ PJ2 (Q) \ {∅,Q} |̂ψ (u) ∧ ϕ (u) ◦}

∥∥∥.
The above term is a valid class term as PJ2

(Q)\{∅,Q} is a �-class, and ϕ,ψ � ∅.
Note that the �-class R is not the “real” real-line (if such a thing really exists).

However, it does contain all computable real numbers, such as
√

2 and π (see [5]).
Notation. We employ the following notations: Q+ = {q ∈ Q | 0 < q}, R+ =
{r ∈ R | 0 < r}, (a, b) = {r ∈ R | a < r < b} and [a, b] = {r ∈ R | a ≤ r ≤ b}, for
a, b real numbers. 18

Proposition 29 The following holds:
1. The standard ordering < on R is available in RSTFOL

HF as a �-relation.
2. The standard addition and multiplication of reals are available in RSTFOL

HF

as �-functions.

We next show that the least upper bound principle is provable in RSTFOL
HF for

�-subsets of R.

Theorem 30 It is provable in RSTFOL
HF that every nonempty �-subset of R that

is bounded above has a least upper bound in R. Furthermore, the induced mapping
(l.u.b) is available in RSTFOL

HF as a �-function.

Theorem 30 only states that �-subsets of R have the least upper bound property.
Thus, it is insufficient for the development of most of standard mathematics in
RSTFOL

HF . The reason is that even the most basic substructures of R, like the
intervals, are not �-sets, but proper �-classes in RSTFOL

HF . Hence, a stronger
version of the theorem, which ensures that the least upper bound property holds
for standard �-subclasses of R, is needed. Theorem 40 below provides such an
extension, but it requires some additional definitions and propositions.

First we consider �-classes U ⊆ R which are open. These �-classes are
generally not �-sets (unless empty), since they contain an interval of positive
length, which is a proper �-class and thus cannot be contained in a �-set (see
Prop. 14(3)). Clearly, there is no such thing as a �-set of �-classes, as a proper
�-class can never be an element of another �-set or �-class. However, the use of
coding (following [30], [31]19) allows us, for example, to replace the meaningless
statement “the union of a �-set of �-classes is a �-class” with “given a �-set of
codes for �-classes, the union of the corresponding �-classes is a �-class”.

The coding technique we use is based on the standard mathematical notation
for a “family of sets”, (Ai)i∈I , where I is a set of indices and Ai is a set for each

17 As noted in Footnote 6, some of claims in the sequel have counterparts in [5]. However,
the minimality restriction on the universe employed in this paper, which in turn
requires the use of classes, makes a crucial difference.

18 Notice that Q+ is a �-set and R+ is a �-class.
19 In [31] such codings are called “proxies”.
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i ∈ I. In RSTFOL
HF we cannot construct the collection of all such Ai’s if Ai is a

�-class for some i ∈ I. Thus, we treat the �-set I as a code for the “family of
classes” (Ai)i∈I . In fact, we mainly use the union of such families, i.e.,

⋃
Ai

i∈I
.

Definition 31 For any p ∈ R and q ∈ R+, the open ball Bq (p) is the �-class
{r ∈ R | |r − p| < q}.

Definition 32 Let U ⊆ R be a �-class. If there exists a �-set u ⊆ Q×Q+ s.t.
U =

⋃
Bq (p)
〈p,q〉∈u

= {r ∈ R | ∃p, q (〈p, q〉 ∈ u ∧ |r − p| < q)}, then U is called open

and u is a code for U .

In what follows, the formalizations in RSTFOL
HF are carried out as follows:

– To quantify over open �-classes: Qu ⊆ Q̃×Q+ (Q ∈ {∀,∃}).
– To decode the open �-class whose code is u:

dec (u) := {◦r ∈ R̄ |̂ ∃p, q (〈p, q〉 ∈̌u ∧ |r − p| < q) ◦}
– To state that a class variable U is an open �-class:

Open (U) := ∃u ⊆ Q̃×Q+.U = dec (u)

Proposition 33 The following are provable in RSTFOL
HF :

1. For any �-set u ⊆ R × R+, {r ∈ R | ∃p, q (〈p, q〉 ∈ u ∧ |r − p| < q)} is an
open �-class.

2. The open ball Bq (p) is an open �-class for any p ∈ R and q ∈ R+.

Proposition 34 The following are provable in RSTFOL
HF :

1. The union of a �-set of open �-classes is an open �-class. i.e, given a �-set
of codes of open �-classes, the union of the corresponding open �-classes is
an open �-class.

2. The intersection of finitely many open �-classes is an open �-class.

Example 1. As an example of the use of the coding technique, we demonstrate
the formalization of Prop. 34(1):

∀z.(∀x ∈ z.x ⊆ Q̃×Q+)→ ∃w ⊆ Q̃×Q+.dec (w) = {◦r |̂ ∃x ∈ z.r ∈ dec (x) ◦}

Definition 35 A �-class X ⊆ R is closed if R−X is open.

Lemma 36 Let X ⊆ R be a �-class and A ⊆ X be a �-set. The following are
equivalent in RSTFOL

HF :
1. Every open ball about a point in X intersects A.
2. Every open �-class that intersects X also intersects A.

Example 2. As an example of a full formalization which uses class variables, the
formalization of the Lemma above is:

φ := X ⊆ R̄→ ∀a ⊆X
(
∀x ∈X∀ε ∈ R̄+ (Bε (x) ∩ a 6= ∅)↔

∀u ⊆ Q̃×Q+ (dec (u) ∩X 6= ∅ → dec (u) ∩ a 6= ∅)
)

12



We now demonstrate how to obtain a formula in the basic LHF
RST by replacing each

appearance of a class term or variable with the formula it stands for. First, we
explain the translation of x ∈ R̄ to LHF

RST . One iteration of the translation entails
x ∈ PJ2 (Q) \ {∅,Q} ∧ ϕ (x) ∧ ψ (x) for ϕ,ψ as in Def. 28. A second iteration
yields R (x) := x ⊆ Q̃ ∧ x 6= Q̃ ∧ x 6= ∅ ∧ ϕ (x) ∧ ψ (x) which is in LHF

RST . For the
translation of φ, first substitute {◦x |̂ θ◦} for X, where θ � ∅. Proceeding with the
translation steps results in the following formula (scheme) of LHF

RST , for θ � ∅:

∀b (θ (b)→ R (b))→ ∀a ((∀z.z ∈ a→ θ (z))→ ∀x (θ (x)→ ∀ε ((R (ε) ∧ 0 < ε)→

∃w. |w − x| < ε ∧ w ∈ a↔ ∀u ⊆ Q̃×Q+ (∃w.R (w) ∧ ∃p, q (〈p, q〉 ∈̌u ∧ |w − p| < q)∧
θ (w))→ ∃w.R (w) ∧ ∃p, q (〈p, q〉 ∈̌u ∧ |w − p| < q) ∧ w ∈ a)

Remark 37 When we say that a theorem about a �-class or a �-function is
provable in RSTFOL

HF (as in Lem. 36), we mean that it can be formalized and
proved as a scheme. That is, that its proof can be carried out in RSTFOL

HF using
a uniform scheme. The one exception is theorems about open �-classes, which
due to the coding machinery can be fully formalized and proved in RSTFOL

HF .

Definition 38 Let X ⊆ R be a �-class, and A ⊆ X a �-set. A is called dense
in X if one of the conditions of Lemma 36 holds. X is called separable if it
contains a dense �-subset.

Proposition 39 It is provable in RSTFOL
HF that an open �-subclass of a separable

�-class is separable.

Now we can finally turn to prove a more encompassing least upper bound theorem.

Theorem 40 It is provable in RSTFOL
HF that every nonempty separable �-

subclass of R that is bounded above has a least upper bound in R.

Definition 41 A �-class X ⊆ R is called an interval if for any a, b ∈ X s.t.
a < b: if c ∈ R ∧ a < c < b then c ∈ X.

Proposition 42 It is provable in RSTFOL
HF that a non-degenerate interval is

separable. If it is also bounded above then it has a least upper bound.

Proposition 43 Let X ⊆ R be a �-class. It is provable in RSTFOL
HF that X is

connected (i.e. cannot be disconnected by two open �-classes) iff it is an interval.

4.3 Real Functions

Definition 44 Let X be a �-class. A �-sequence in X is a �-function on N
whose image is contained in X.

Lemma 45 It is provable in RSTFOL
HF that Cauchy �-sequences in R converge

to limits in R. The induced map (lim) is available in RSTFOL
HF as a �-function.

Proposition 46 It is provable in RSTFOL
HF that if X ⊆ R is closed, then every

Cauchy �-sequence in X converges to a limit in X.
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Next we want to study sequences of functions, but Def. 44 cannot be applied as is,
since �-functions which are proper �-classes cannot be values of a �-function (in
particular, of a �-sequence). Instead, we use the standard Uncurrying procedure.

Definition 47 For X,Y �-classes, a �-sequence of �-functions on X whose
image is contained in Y is a �-function on N×X with image contained in Y .

Proposition 48 Any point-wise limit of a �-sequence of �-functions on a
�-class X ⊆ R whose image is contained in R is available in RSTFOL

HF as a
�-function.

Next we turn to continuous real �-functions. One possibility of doing so, adopted
e.g., in [30,32], is to introduce codes for continuous real �-functions (similar to
the use of codes for open �-classes). This is of course possible as such �-functions
are determined by their values on the �-set Q. However, we prefer to present
here another approach, which allows for almost direct translations of proofs in
standard analysis textbook into our system. This is done using free function
variables. Accordingly, the theorems which follow are schemes. Implicitly, the
previous sections of this paper can also be read and understood as done in this
manner. Therefore, in what follows we freely use results from them.

Definition 49 Let X ⊆ R be a �-class and let F be a �-function on X whose
image is contained in R. F is called a continuous real �-function if:

∀a ∈ X∀ε ∈ R+∃δ ∈ R+∀x ∈ X. |x− a| < δ → |F (x)− F (a)| < ε

Proposition 50 Let X ⊆ R be a �-class and F be a �-function on X whose
image is contained in R. It is provable in RSTFOL

HF that if for every open �-class
B ⊆ R, there is an open �-class A s.t. F−1 [B] = A ∩X, then F is continuous.

Lemma 51 The following are provable in RSTFOL
HF :

1. The composition, sum and product of two continuous real �-functions is a
continuous real �-function.

2. The uniform limit of a �-sequence of continuous real �-functions is a con-
tinuous real �-function.

Theorem 52 (Intermediate Value Theorem) Let F be a continuous real
�-function on an interval [a, b] with F (a) < F (b). It is provable in RSTFOL

HF

that for any d ∈ R s.t. F (a) < d < F (b), there is c ∈ [a, b] s.t. F (c) = d.

Theorem 53 (Extreme Value Theorem) Let F be a continuous real �- func-
tion on a non-degenerate interval [a, b]. It is provable in RSTFOL

HF that F attains
its maximum and minimum.

The next step is to introduce in RSTFOL
HF the concepts of differentiation, integra-

tion, power series, etc, and develop their theories. It should now be clear that
there is no difficulty in doing so. Since a thorough exposition obviously could not
fit in one paper we omit it here, but use some relevant facts in what follows.
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We now show that all elementary functions that are relevant to J2 are available
in RSTFOL

HF . Even though for every real number y in J2, λx ∈ R.y is available in
RSTFOL

HF as a �-function, not all constant functions on the “real” real line are
available in J2. The reason is that λx ∈ R.y does not exists in J2 for every “real”
number y (simply since not every “real” real number is available in RSTFOL

HF ).

Definition 54 The collection of J2-elementary functions is defined like the
standard elementary functions (see, e.g., [26]), replacing the constant functions
by J2-constant functions, which are λx ∈ R.c where c is a real in J2.

Proposition 55 Let F be a continuous, strictly monotone real �-function on a
real interval. Then it is provable in RSTFOL

HF that the inverse function F−1 is
available in RSTFOL

HF as a �-function, and its continuity is provable in RSTFOL
HF .

Proposition 56 All J2-elementary functions are available in RSTFOL
HF . Also,

any piece-wise defined function with finitely many pieces such that its restriction
to any of the pieces is a J2-elementary function, is available in RSTFOL

HF .

5 Conclusion and Further Research

In this paper we showed that a minimal computational framework is sufficient for
the development of applicable mathematics. Of course, a major future research
task is to implement and test the framework. A critical component of such
implementation will be to scale the cost of checking the safety relation. We then
plan to use the implemented framework to formalize even larger portions of
mathematics, including first of all more analysis, but also topology and algebra.

Another important task is to fully exploit the computational power of our
computational theories. This includes finding a good notion of canonical terms,
and investigating various reduction properties such as strong normalization. We
intend to try also to profit from this computational power in other ways, e.g., by
using it for proofs by reflection as supported by well-known proof assistant like
Coq [10], Nuprl [12] and Isabelle/HOL [25].

An intuitionistic variant of the system RSTFOL
C , RST iFOL

C , can be also con-
sidered. It is based on intuitionistic first-order logic (which underlies constructive
counterparts of ZF , like CZF [1] and IZF [7]), and is obtained by adding to
RSTFOL

C the axiom of Restricted Excluded Middle: ϕ ∨ ¬ϕ, where ϕ � ∅. This
axiom is computationally acceptable since it simply asserts the definiteness of
absolute formulas. The computational theory RST iFOL

HF should allow for a similar
formalization of constructive analysis (e.g., [24]).

Further exploration of the connection between our framework and other
related works is also required. This includes works on: computational set theory
[1,7,9,17,24], operational set theory [16,19], and rudimentary set theory [6,22].

Another direction for further research is to consider larger computational
structures. This includes Jω or even Jωω (which is the minimal model of the
minimal computational theory based on ancestral logic [4,11]). On the one hand,
in such universes standard mathematical structures can be treated as sets. On
the other hand, they are more comprehensive and less concrete, thus include
more objects which may make computations harder.
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