
Constructing Unprejudiced Extensional Type
Theories with Choices via Modalities
Liron Cohen ! Ï

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Vincent Rahli ! Ï

University of Birmingham, UK

Abstract
Time-progressing expressions, i.e., expressions that compute to different values over time such as
Brouwerian choice sequences or reference cells, are a common feature in many frameworks. For type
theories to support such elements, they usually employ sheaf models. In this paper, we provide a
general framework in the form of an extensional type theory incorporating various time-progressing
elements along with a general possible-worlds forcing interpretation parameterized by modalities.
The modalities can, in turn, be instantiated with topological spaces of bars, leading to a general
sheaf model. This parameterized construction allows us to capture a distinction between theories
that are “agnostic”, i.e., compatible with classical reasoning in the sense that classical axioms can be
validated, and those that are “intuitionistic”, i.e., incompatible with classical reasoning in the sense
that classical axioms can be proven false. This distinction is made via properties of the modalities
selected to model the theory and consequently via the space of bars instantiating the modalities.
We further identify a class of time-progressing elements that allows deriving “intuitionistic” theories
that include not only choice sequences but also simpler operators, namely reference cells.

2012 ACM Subject Classification Theory of computation � Type theory; Theory of computation
� Constructive mathematics

Keywords and phrases Intuitionism, Extensional Type Theory, Constructive Type Theory, Realiz-
ability, Choice sequences, References, Classical Logic, Theorem proving, Agda

Digital Object Identifier 10.4230/LIPIcs.FSCD.2022.10

Funding This research was partially supported by Grant No. 2020145 from the United States-Israel
Binational Science Foundation (BSF).

1 Introduction

Time-progressing elements are a common feature in many frameworks. These are elements
whose value can change over time. Examples include mutable reference cells which are
pervasive in programming languages, and free-choice sequences which are key components in
logical systems such as Brouwer’s intuitionistic logic [24, 40, 39, 38, 26, 43, 30]. A free-choice
sequence is a primitive concept of a sequence that is never complete and can always be
extended over time, and whose choices are allowed to be made freely, i.e., not generated by a
predefined procedure. Capturing the non-deterministic, time-progressing behavior of such
elements in a formal setting often relies on sheaf models, which logical formulas can interact
with through a forcing interpretation, e.g., [19, 42].

The inclusion of such elements in a logical system has far reaching consequences. In
particular, many works have used the existence of choice-sequences to show incompatibility
with classical reasoning. For example, Kripke’s Schema, which relies on the notion of choice
sequences, is inconsistent with Church’s Thesis [41, Sec.5]. They have also been used to
refute classical results such as “any real number different from 0 is also apart from 0” [22,
Ch.8]. Similarly, a weak counterexample of the Law of Excluded Middle (LEM) was provided
by defining a choice sequence of numbers in which the value 1 can only be picked once an

© Liron Cohen and Vincent Rahli;
licensed under Creative Commons License CC-BY 4.0

7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022).
Editor: Amy P. Felty; Article No. 10; pp. 10:1–10:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cliron@cs.bgu.ac.il
https://www.cs.bgu.ac.il/~cliron/
https://orcid.org/0000-0002-6608-3000
mailto:V.Rahli@bham.ac.uk
https://vrahli.github.io/
https://orcid.org/0000-0002-5914-8224
https://doi.org/10.4230/LIPIcs.FSCD.2022.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

undecided conjecture has been resolved (proved or disproved), and then by showing that
one could resolve this undecided conjecture using LEM [8, Ch.1,Sec.1]. Kripke [29, Sec.1.1]
also used choice sequences to refute other classical results, namely Kuroda’s conjecture and
Markov’s Principle (MP) in Kreisel’s FC system [25]. This technique was later generalized
using sheaf models [19, 42] to refute classical axioms. For example, in [14] the independence
of MP with Martin-Löf’s type theory was proven using a forcing method where the forcing
conditions capture the unconstrained nature of free-choice sequences in Kripke’s proof.
However, using a concrete sheaf model, it was shown in [5] that choice sequences can be made
compatible with classical reasoning. This was however done by committing to a particular
model, disabling the ability to derive “purely” intuitionistic theories.

This paper goes one step further by providing a general framework in the form of an
extensional type theory that incorporates a notion of time progression through a Kripke frame,
as well as elements that progress over time. The framework uses a general possible-worlds
forcing interpretation parameterized by a modality, which, in turn can be instantiated with
topological spaces of bars, leading to a general sheaf model. Thus, our generic type theory,
denoted by TTu

C , is modeled through an abstract modality u and is parameterized by a type
of time-progressing choice operators C, which can both be instantiated to derive theories that
are either compatible or incompatible with classical logic. TTu

C ’s syntax and operational
semantics are presented by first describing its time-independent core in Sec. 2.2, and then its
time-progressing components in Sec. 3. In particular, TTu

C can be instantiated with different
choice operators described in Sec. 3.2. TTu

C ’s inference rules are standard and are presented
in Appx. A. They reflect the semantics of the types, which are given meaning through a
forcing interpretation [10, 11, 3]parameterized by a modality u presented in Sec. 4.

We call TTu

C an “unprejudiced” type theory since we can tune the parameters to obtain
theories that are either “agnostic”, i.e., compatible with classical reasoning (in the sense
that classical axioms can be validated), or that are “intuitionistic”, i.e., incompatible with
classical reasoning (in the sense that classical axioms can be proven false). Concretely, we
identify classes of choice operators and modalities that are sufficient to derive the negation
of classical axioms, as well as classes that are sufficient to validate classical axioms in Sec. 5.
We further show that TTu

C can be validated w.r.t. standard sheaf models in Sec. 6, which
presents classes of sheaf models over topological spaces of bars that are used to instantiate the
modalities. We provide examples of classes of bar spaces B and choice operators C that allow
proving the consistency of TTB

C with LEM, and classes that allow proving the consistency of
TTB

C with the negation of classical axioms such as LEM. In particular, we show that even
though choice sequences can be used to validate the negation of classical axioms, they are
not necessary, and in fact much simpler choice operators, e.g. mutable references, are enough.

2 Background

2.1 Metatheory
Our metatheory is Agda’s type theory [1]. The results presented in this paper have been
formalized in Agda, and the formalization is available here: https://github.com/vrahli/
opentt/. We use ¾,¿,0,1,�, in place of Agda’s logical connectives in this paper. Agda
provides an hierarchy of types annotated with universe labels which we omit for simplicity.
Following Agda’s terminology, we refer to an Agda type as a set, and reserve the term type for
TTu

C ’s types. We use P as the type of sets that denote propositions; N for the set of natural
numbers; and B for the set of Booleans true and false. We use induction-recursion to define
the forcing interpretation in Sec. 4, where we use function extensionality to interpret universes.

https://github.com/vrahli/opentt/
https://github.com/vrahli/opentt/

L. Cohen and V. Rahli 10:3

v " Value ��� vt (type) ¶ λx.t (lambda) ¶ � (constant)
¶ n (number) ¶ inl�t� (left injection) ¶ δ (choice name)
¶ �t1, t2� (pair) ¶ inr�t� (right injection)

vt " Type ��� Πx�t1.t2 (product) ¶ rx � t1 ¶ t2x (set) ¶ t1�t2 (disjoint union)
¶ Σx�t1.t2 (sum) ¶ t1�t2"t (equality) ¶ �t (time truncation)
¶ Ui (universe) ¶ Nat (numbers)

t " Term ��� x (variable) ¶ t1 t2 (application)
¶ v (value) ¶ let x, y � t1 in t2 (pair destructor)
¶ fix�t� (fixpoint) ¶ case t of inl�x�� t1 | inr�y�� t2 (injection destructor)

�λx.t� u (w t�x¯u�
fix�v� (w v fix�v�
δ�n�(w choice?�w, δ, n�

let x, y � �t1, t2� in t (w t�x¯t1; y¯t2�

case inl�t� of inl�x�� t1 | inr�y�� t2 (w t1�x¯t�
case inr�t� of inl�x�� t1 | inr�y�� t2 (w t2�y¯t�

Figure 1 Core syntax (above) and small-step operational semantics (below).

We do not discuss this further here and the interested reader is referred to forcing.lagda in the
Agda code for further details. Classical reasoning is only used once in Lem. 20 to establish
the compatibility of instances of TTu

C with LEM.

2.2 TTu

C’s Core Syntax and Operational Semantics
TTu

C ’s core syntax and operational semantics are presented in Fig. 1, which for presentation
purposes also includes the additional components introduced in Sec. 3, highlighted in blue
boxes. Fig. 1’s upper part presents the syntax of TTu

C ’s core computation system, where x

belongs to a set of variables Var. For simplicity, numbers are considered to be primitive. The
constant � is there for convenience, and is used in place of a term, when the particular term
used is irrelevant. Terms are evaluated according to the operational semantics presented in
Fig. 1’s lower part. In what follows, we use all letters as metavariables for terms. Let t�x¯u�

stand for the capture-avoiding substitution of all the free occurrences of x in t by u.
Types are syntactic forms that are given semantics in Sec. 4 via a forcing interpretation.

The type system contains standard types such as dependent products of the form Πx�t1.t2
and dependent sums of the form Σx�t1.t2. For convenience we write t1 � t2 for the non-
dependent Π type; True for 0�0"Nat; False for 0�1"Nat; T for �T � False�; Bool for
True�True; tt for inl���; ff for inr���; and ��t� for t�tt"Bool (a Bool to type coercion).

Our computation system includes a space-squashing mechanism, which we use (among
other things) to validate some of the axioms in Secs. 5.1 and 5.2. It erases the evidence that a
type is inhabited by truncating it to a subsingleton type using set types: �T � rx � True ¶ Tx.
While True is a contractible type (because equality types are subsingleton types – see Sec. 4),
�T is either empty or inhabited by all (closed) terms in Term, and all its inhabitants are
equal to each other. Therefore, �T is inhabited iff T is inhabited.

Fig. 1’s lower part presents TTu

C ’s core small-step operational semantics, where t1 (t2
expresses that the term t1 reduces to t2 in one computation step. We omit the congruence
rules that allow computing within terms such as: if t1 (t2 then t1�u�(t2�u�. We denote
by � the reflexive transitive closure of (, i.e., a � b states that a computes to b in '0 steps.

3 TTu

C’s Time-Progressing Choice Operators

In addition to the core described in Sec. 2.2, TTu

C includes time-progressing notions which
we now describe. We capture these notions via the concept of worlds (Sec. 3.1). Then, we

FSCD 2022

https://github.com/vrahli/opentt/blob/master/forcing.lagda

10:4 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

provide a formal, abstract definition of choice operators and add corresponding components to
the core system (Sec. 3.2). These time-progressing choice operators cover standard operators
such as Brouwerian choice sequences or references (Sec. 3.2.1). We further enrich our system
with a notion of time-truncation, used to capture time-sensitive expressions (Sec. 3.3).

3.1 Worlds
To capture the time progression notion, the core computation system presented in Sec. 2.2 is
parameterized by a Kripke frame [28, 29] defined as follows:

▶ Definition 1 (Kripke Frame). A Kripke frame consists of a set of worlds W equipped with
a reflexive and transitive binary relation F.

Let w range over W . We sometimes write w ¬

G w for w F w ¬. Let Pw be the collection of
predicates on world extensions, i.e., functions in ¾w ¬

G w.P. Note that due to F’s transitivity,
if P " Pw then for every w ¬

G w it naturally extends to a predicate in Pw¬ . We further define
the following notations for quantifiers. ¾F

w�P � states that P " Pw is true for all extensions
of w, i.e., P w ¬ holds in all worlds w ¬

G w. ¿Fw�P � states that P " Pw is true at an extension
of w, i.e., P w ¬ holds for some world w ¬

G w. For readability, we sometime write ¾F

w�w ¬

.P �

(or ¿Fw�w ¬

.P �) instead of ¾F

w�λw ¬

.P � (or ¿Fw�λw ¬

.P �), respectively.
The operational semantics is parameterized by a frame in the sense that the relation

t1 (t2 is generalized to a ternary relation between two terms and a world, t1 (w t2, which
expresses that t1 reduces to t2 in one step of computation w.r.t. the world w. Similarly,
a �w b generalizes a � b. We also write a ¹w b if a computes to b in all extensions of w, i.e.,
if ¾F

w�w ¬

.a �w¬ b�. We write �w for the symmetric and transitive closure of �w.

3.2 Time-Progressing Choice Operators
This section introduces the general notion of time-progressing choices into our system. We
rely on worlds to record choices and provide operators to access the choices stored in a world.
Choices are referred to through their names. A concrete example of such choices are reference
cells in programming languages, where a variable name pointing to a reference cell is the
name of the corresponding reference cell. To introduce an abstract notion of such choice
operators, we assume our computation system contains a set N of choice names, that is
equipped with a decidable equality, and an operator that given a list of names, returns a
name not in the list. This can be given by, e.g., nominal sets [37]. In what follows we let δ

range over N , and take N to be N for simplicity. We introduce further abstract operators
and properties in Defs. 2, 4, 8, 10–12, 14, 15, and 19 which our framework is parameterized
over, and which we show how to instantiate in Exs. 5, 6, 13, 27, 28, and 30 below. Definitions
such as Def. 2 provide axiomatizations of operators, and in addition informally indicate their
intended use. Choices are defined abstractly as follows:

▶ Definition 2 (Choices). Let C N Term be a set of choices,1 and let κ range over C. We
say that a computation system contains �N , C�-choices if there exists a partial function
choice? "W � N � N� C. Given w "W, δ " N , n " N, the returned choice, if it exists, is
meant to be the n

th choice made for δ according to w. C is said to be non-trivial if it contains
two values κ0 and κ1, which are computationally different, i.e., such that �κ0 �w κ1� for
all w.

1 To guarantee that C N Term, one can for example extend the syntax to include a designated constructor
for choices, or require a coercion C � Term. We opted for the latter in our formalization.

L. Cohen and V. Rahli 10:5

Thus, to introduce choices into the computation system, we extend the core computation
system with a new kind of value for a choice name δ (as shown in Fig. 1) that can be used
to access choices from a world. To facilitate making use of choices extracted from worlds
and computing with them, the operational semantics is also extended with the following
clause: δ�n� (w choice?�w, δ, n� (as shown in Fig. 1). This allows applying a choice name
δ to a number n to get a choice from the current world w. Note that the N component in
this definition enables providing a general notion of choice operators. In some cases, e.g. the
case for free-choice sequences, the history is recorded and so the notion of an n’s choice is
extracted from the history of the choice element. In simpler choice concepts, e.g. references,
one only maintains the latest update and so the N component becomes moot.2

We next introduce the notion of a restriction, which allows assuming that the choices
made for a given choice name all satisfy a pre-defined constraint.

▶ Definition 3 (Restrictions). A restriction r " Res is a pair �res, d� consisting of a function
res " N� C � P and a default choice d " C, such that ¾�n � N�.�res n d� holds. Given such
a pair r, we write r�d for d; �r n κ� for �res n κ�; and r�κ� for ¾�n � N�.r n κ.

Intuitively, res specifies a restriction on the choices that can be made at any point in
time and d provides a default choice that meets this restriction (e.g., for reference cells,
this default choice is used to initialize a cell). For example, the restriction �λn.λκ.κ " N, 0�
requires choices to be numbers and provides 0 as a default value. To reason about restrictions,
we require the existence of a “compatibility” predicate as follows.

▶ Definition 4. We further assume the existence of a predicate compatible " N � W �

Res � P, intended to guarantee that restrictions are satisfied, and which is preserved by F:
¾�δ � N ��w1, w2 �W��r � Res�.w1 F w2 � compatible�δ, w1, r�� compatible�δ, w2, r�.

3.2.1 Standard Examples of Choice Operators

The abstract notion of choice operators has many concrete instances. This section provides a
high-level description of two such instances: a theoretically-oriented one, based on the notion
of free-choice sequences, and a programming-oriented one, based on mutable references.

▶ Example 5 (Free-Choice Sequences). Free choices are fundamental objects introduced by
Brouwer [9] that lay at the heart of intuitionistic mathematics. They are there described as
“new mathematical entities. . . in the form of infinitely proceeding sequences, whose terms are
chosen more or less freely from mathematical entities previously acquired”. Thus, free-choice
sequences are never-finished sequences of objects created over time by continuously picking
elements from a previously well-defined collection, e.g., the natural numbers. Even though
free-choice sequences are ever proceeding, at any point in time the sequence of choices made
so far is finite. Therefore, the current state of a choice sequence can be implemented as a list
of choices. We use worlds to capture the state of all the choice sequences started so far, and
the F relation on worlds captures the fact that an extension of a world can contain additional
choices. In that respect, a choice sequence can be seen as a reference cell that maintains the
complete history of values that were stored in the cell. Formally, we define choice sequences
of terms, Fcs, as follows (see worldInstanceCS.lagda for details):

2 Technically, this can be captured by instantiating C with a function type from N when records are kept.
For simplicity, we here opt to make N explicit.

FSCD 2022

https://github.com/vrahli/opentt/blob/master/worldInstanceCS.lagda

10:6 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

Non-Trivial Choices. Let N � N and C � Term, which is non-trivial, e.g., take κ0 � 0 and
κ1 � 1. Other examples of Cs that would be suitable for the results presented in this
paper are N, with κ0 � 0 and κ1 � 1 (which can be mapped to the terms 0 and 1); or B
with κ0 � true and κ1 � false (which can be mapped to the terms tt and ff).

Worlds. Worlds are instantiated as lists of entries, where an entry is either (1) a pair of
a choice name and a restriction, indicating the creation of a choice sequence; or (2) a
pair of a choice name δ and a choice κ indicating the extension of the choice sequence δ

with the new choice κ. F is the reflexive transitive closure of these extension operations.
Given an entry list w and a name δ, the state of the choice sequence δ in w is then the
list of extensions made to δ starting from the point δ was created in w, which allows us
to define choice? by looking up the n

th choice in that list. This enables starting multiple
choice sequences in parallel, which is crucial in the proof of Lem. 16.

Compatibility. compatible�δ, w, r� states that a choice sequence named δ with restriction r
was started in the world w (using the first kind of entry described above), and that all
the choices made for δ in w satisfy r .

▶ Example 6 (References). Reference cells, which are values that allow a program to indirectly
access a particular object, are also choice operators since they can be pointed to different
objects over their lifetime. As opposed to a choice sequence, with a reference cell, the history
of previous choices is not kept, and the old recorded value is discarded when a new value is
stored in a reference cell. In this paper, we will make use of a particular class of reference
cell, that are mutable, but can be made immutable at any given point, i.e., the reference cell
can be “frozen” so that new values cannot be stored anymore. Formally, we define references
to terms, Ref, as follows (see worldInstanceRef.lagda for details):
Non-trivial Choices. N and C are defined as for free-choice sequences.
Worlds. Worlds are lists of cells, where a cell is a quadruple of (1) a choice name, (2) a

restriction, (3) a choice, and (4) a Boolean indicating whether the cell is mutable. F is
the reflexive transitive closure of two operations that allow (1) creating a new reference
cell, and (2) updating an existing reference cell. We define choice?�w, δ, n� so that it
simply accesses the content of the δ cell in w, irrespective of what n is. Again, this allows
for maintaining multiple reference cells, which is crucial in the proof of Lem. 16.

Compatibility. compatible�δ, w, r� states that a reference cell named δ with restriction r was
created in the world w (using the first kind of operation described above), and that the
current value of the cell satisfies r .

3.3 Time-Truncation
While some computations are time-invariant, in the sense that they compute to the same
value at any point in time, others, such as references, are time-sensitive. These two kinds
of computations have different properties, e.g., a time-invariant term t that computes to a
number n in a world w, will compute to n in all w ¬

G w. However, if t is a time-sensitive
number, t might compute to numbers different from n in extensions of w, e.g., n�1 in w ¬

G w
and n�2 in w ¬¬

G w ¬. To capture this distinction at the level of types, we further enrich TTu

C
by a time-truncation operator �. The type �T contains T ’s members as well as the terms
that behave like members of T at a particular point in time, i.e., in a particular world.

In this paper, we make use in particular of the type �Nat, which as opposed to Nat, is not
required to only be inhabited by time-invariant terms, and allows for terms to compute to
different numbers in different world extensions. For example, �Nat is allowed to be inhabited
by a term t that computes to 3 in some world w, and to 4 in w ¬

G w. A reference cell

https://github.com/vrahli/opentt/blob/master/worldInstanceRef.lagda

L. Cohen and V. Rahli 10:7

that holds numbers is then essentially of type �Nat but not of type Nat, as its content can
change over time. This distinction between Nat and �Nat will be critical when validating the
negation of classical axioms in Sec. 5.1, where we make use of time-sensitive references (in
particular in Ex. 13). Note that as we only need a type with two different inhabitants, we
could have equally used �Bool, whose inhabitants compute to either tt or ff in a given world,
but might compute to different Booleans in different extensions.

4 The Modality-based Forcing Interpretation

Now that we have defined TTu

C ’s computation system that includes choice operators, we
provide a semantic for it. TTu

C is interpreted via a forcing interpretation in which the forcing
conditions are worlds. This interpretation is defined using induction-recursion as follows:
(1) the inductive relation w è T1�T2 expresses type equality in the world w; (2) the recursive
function w è t1�t2"T expresses equality in a type. We further use the following abstractions:
w è type�T � for w è T �T , w è t"T for w è t�t"T , and w è T for ¿�t � Term�.w è t"T .

This forcing interpretation is parameterized by a family of abstract modalities u, which
we sometimes refer to simply as a modality, which is a function that takes a world w to
its modality uw " Pw � P. We often write uw�w ¬

.P � for uwλw ¬

.P . To guarantee that this
interpretation yields a standard type system in the sense of Thm. 9, we require in Def. 8. that
the modalities satisfy certain properties reminiscent of standard modal axiom schemata [16].

The inductive relation w è T1�T2 has one constructor per type plus one additional
constructor expressing when two types are equal in a world w using the uw modality.
Consequently, the recursive function w è t1�t2"T has as many cases as there are constructors
for w è T �T

¬, requiring a dependent version �i
w of uw to recurse over i, which is a proof

that T is given meaning using the uw modality. Indeed, technically, u induces two abstract
modalities for a world w: the modality uw " Pw � P, and a dependent version �i

w, where
P " Pw � P and i " uwP . However, to avoid the technical details involved with the
dependent modality �i

w, we opt here for a slightly informal presentation where we slid the
technical details concerning the dependent modality to Appx. B.

▶ Definition 7 (Forcing interpretation). Given modality u, the forcing interpretation of TTu

C
is given in Fig. 2. There, we write R

� for R’s transitive closure, and Famw�A1, A2, B1, B2�

for w è A1�A2 0¾
F

w�w ¬

.¾�a1, a2 � Term�.w ¬

è a1�a2"A1 � w ¬

è B1�x¯a1��B2�x¯a2��.
3

There are some standard properties expected for a semantics such as this forcing inter-
pretation to constitute a type system [2, 15]. These include the monotonocity and locality
properties expected for a possible-world semantics [44, 18, 17](here monotonicity refers to
types, and not to computations). In order to obtain a type system satisfying such standard,
useful properties, we must impose some conditions on the modality. Thus, we next identify a
set of conditions for the underlying modality that is sufficient for proving these type system
properties.

▶ Definition 8 (Equality modality). The modality u is called an equality modality if it
satisfies the following properties:

3 For readability, we adopt a slightly different presentation here compared to the Agda formalization. See
Appx. B for a faithful presentation, which in addition covers universes.

FSCD 2022

10:8 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

[leftmargin=*]

Numbers: w è Nat�Nat ¿ True
w è t�t

¬

"Nat ¿ uw�w ¬

.¿�n � N�.t ¹w¬ n 0 t
¬

¹w¬ n�

Products:
w è Πx�A1.B1�Πx�A2.B2 ¿ Famw�A1, A2, B1, B2�

w è f�g"Πx�A.B ¿ uw�w ¬

.¾�a1, a2 � Term�.w ¬

è a1�a2"A� w ¬

è f a1�g a2"B�x¯a1��

Sums:
w è Σx�A1.B1�Σx�A2.B2 ¿ Famw�A1, A2, B1, B2�

w è p1�p2"Σx�A.B ¿ uw�w ¬

.¿�a1, a2, b1, b2 � Term�.w ¬

è a1�a2"A 0 w ¬

è

b1�b2"B�x¯a1� 0 p1 ¹w¬ �a1, b1� 0 p2 ¹w¬ �a2, b2��

Sets:
w è rx � A1 ¶ B1x�rx � A2 ¶ B2x ¿ Famw�A1, A2, B1, B2�

w è a1�a2"rx � A ¶ Bx ¿ uw�w ¬

.¿�b1, b2 � Term�.w ¬

è a1�a2"A 0 w ¬

è b1�b2"B�x¯a1��

Disjoint unions:
w è A1�B1�A2�B2 ¿ w è A1�A2 0 w è B1�B2

w è a1�a2"A�B ¿ uw�w ¬

.¿�u, v � Term�.�a1 ¹w¬ inl�u�0 a2 ¹w¬ inl�v�0w ¬

è u�v"A�1

�a1 ¹w¬ inr�u� 0 a2 ¹w¬ inr�v� 0 w ¬

è u�v"B��

Equalities:
w è �a1�b1"A���a2�b2"B� ¿ w è A�B 0¾

F

w�w ¬

.w ¬

è a1�a2"A� 0¾
F

w�w ¬

.w ¬

è b1�b2"B�

w è a1�a2"�a�b"A� ¿ uw�w ¬

.w ¬

è a�b"A�

(note that a1 and a2 can be any term here)

Time-Quotiented types:
w è �A��B ¿ w è A�B

w è a�b"�A ¿ uw�w ¬

.�λa, b.¿�c, d � Value�.a �w c 0 b �w d 0 w è c�d"A�
�

a b�

Modality closure:
w è T1�T2 ¿ uw�w ¬

.¿�T
¬

1, T
¬

2 � Term�.T1 ¹w¬ T
¬

1 0 T2 ¹w¬ T
¬

2 0 w ¬

è T
¬

1�T
¬

2�

w è t1�t2"T ¿ uw�w ¬

.¿�T
¬

� Term�.T ¹w¬ T
¬

0 w ¬

è t1�t2"T
¬

�

Figure 2 Forcing Interpretation.

u1 (monotonicity of u): ¾�w �W��P � Pw�.¾w ¬

G w. uw P � uw¬P .

u2 (K, distribution axiom): ¾�w �W��P, Q � Pw�.uw �w ¬

.P w ¬

� Q w ¬

�� uwP � uwQ

u3 (C4, i.e., u follows from uu): ¾�w �W��P � Pw�. uw �w ¬

. uw¬ P �� uwP

u4: ¾�w �W��P � Pw�.¾
F

w�P �� uwP

u5 (T , reflexivity axiom): ¾�w �W��P � P�. uw �w ¬

.P �� P

As detailed in Appx. B, we further require that the dependent modality � satisfies similar
properties to the ones listed above, as well as properties relating the two modalities.

▶ Theorem 9. Given a computation system with choices C and an equality modality u, TTu

C
is a standard type system in the sense that its forcing interpretation induced by u satisfy the

L. Cohen and V. Rahli 10:9

following properties (where free variables are universally quantified):

transitivity: w è T1�T2 � w è T2�T3 � w è T1�T3 w è t1�t2"T � w è t2�t3"T � w è t1�t3"T
symmetry: w è T1�T2 � w è T2�T1 w è t1�t2"T � w è t2�t1"T

computation: w è T �T � T ¹w T
¬

� w è T �T
¬ w è t�t"T � t ¹w t

¬

� w è t�t
¬

"T

monotonicity: w è T1�T2 � w F w ¬

� w ¬

è T1�T2 w è t1�t2"T � w F w ¬

� w ¬

è t1�t2"T

locality: uw�w ¬

.w ¬

è T1�T2�� w è T1�T2 uw�w ¬

.w ¬

è t1�t2"T �� w è t1�t2"T
consistency: w è t"False

Proof. The proof relies on the properties of the equality modality. For example: u1 is used
to prove monotonicity when w è T1�T2 is derived by closing under uw; u2 and u4 are used,
e.g., to prove the symmetry and transitivity of w è t�t

¬

"Nat; u3 is used to prove locality;
and u5 is used to prove consistency. See props3.lagda for further details. ◀

5 Compatibility with Classical Axioms

To study the compatibility of TTu

C with classical reasoning, this section identifies two sub-
classes of the family of type theories TTu

C , specified through conditions on the choices and
modalities. Sec. 5.1 provides conditions that are sufficient to derive the negation of classical
axioms such as LEM, while Sec. 5.2 provides conditions that are sufficient to derive LEM.
We further give concrete instantiations for such choices and modalities (the modalities are
instantiated only in Sec. 6.2 based on the notion of bars).

5.1 Intuitionistic Theories
This section identifies a set of general properties of choices and modalities that enables proving
the negation of classical axioms such as LEM. We call theories based on such choices and
modalities “intuitionistic”, in the sense that they are incompatible with classical reasoning.

The proof of the negation of classical axioms provided below (Cor. 17) captures intuition-
istic counterexamples [22, 8] abstractly. Briefly, we prove that, given a non-trivial choice
structure, (A) if the only choice made so far is κ0, then it is not possible to decide whether
κ1 will ever be made. More precisely, we prove that: (B) it is not the case that κ1 will be
made because there are extensions where it won’t; and (C) it is not the case that κ1 is not
made in all extensions because there are extensions where it is made. To capture this, we
require some additional properties from the underlying choices and modalities. To ensure
that (A) holds, we introduce an extendability property in Def. 10, which allows creating a
fresh choice name δ and a world w where the only choice made for δ in w is κ0. (B) is proved
thanks to the properties introduced in Defs. 14 and 15, which guarantee the existence of
an extension where the n

th choice made for δ is κ0, for any n " N. (C) is proved using the
immutability property in Def. 11, which allows exhibiting a world where κ1 is made.

▶ Definition 10 (Extendability). We say that C is extendable if there exists a function
νC "W � N , where νC�w� is intended to return a new choice name not present in w, and
a function startνC "W � Res �W, where startνC�w, r� is intended to return an extension
of w with the new choice name νC�w� with restriction r, satisfying the following properties:

Starting a new choice extends the current world: ¾�w �W��r � Res�.w F startνC�w, r�
Initially, the only possible choice is the default value of the given restriction, i.e.:
¾�n � N��r � Res��w �W��κ � C�.choice?�startνC�w, r�, νC�w�, n� � κ � κ � r�d
A choice is initially compatible with its restriction:
¾�w �W��r � Res�.compatible�νC�w�, startνC�w, r�, r�

FSCD 2022

https://github.com/vrahli/opentt/blob/master/props3.lagda

10:10 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

If only one choice κ was made so far for a name δ, then to prove (C) above we exhibit an
extension where another choice κ

¬ is made. Thus, we require a way to make a choice κ
¬

©� κ,
as well as a way to make κ

¬ immutable in the sense that no other choice than κ
¬ can be made

in the future. This is necessary because TTu

C is a monotonic theory (see Lem. 16’s proof).
Consequently, we further rely on the ability to, at any point in time, be able to constrain the
choices to be the same forever. This does not prevent making different choice before a choice
is made immutable, and the ability to make different choices over time is indeed necessary as
we just highlighted. To capture this, we define the immutability property.

▶ Definition 11 (Immutability). We say that C is immutable if there exist a function
freeze " N � C � W � W (where freeze�δ, κ, w� is intended to return a world w ¬ that
extends the world w with the choice κ for the choice name δ, and such that κ can be retrieved
in any extension of w ¬), and a predicate mutable " N � W � P (intended to hold iff the
choice name is mutable in the world, i.e., different choices can be made), satisfying the
following properties:

Making an immutable choice extends the current world:
¾�δ � N ��w �W��κ � C��r � Res�.compatible�δ, w, r�� r�κ�� w F freeze�δ, κ, w�

A choice is initially mutable: ¾�w �W��r � Res�.mutable�νC�w�, startνC�w, r��
Immutable choices stay immutable: ¾�δ � N ��w � W��κ � C��r �

Res�.compatible�δ, w, r� � mutable�δ, w� � ¿�n � N�.¾
F

freeze�δ,κ,w��w
¬

.choice?�w ¬

, δ, n� �

κ�

In addition, to state properties about non-trivial choices within TTu

C , such as the fact
that it is not always decidable whether a choice will be made in the future (see Σchoice in
Lem. 16), we assume the existence of a term (" Term) denoting a type that contains the two
distinct choices κ0 and κ1, capturing Def. 2 at the level of the theory TTu

C .

▶ Definition 12 (Reflection). We say that C is reflected if there exists a term TypeC " Term
such that the following hold for all worlds w:

TypeC is a type inhabited by κ0 and κ1: w è type�TypeC�, w è κ0"TypeC, w è

κ1"TypeC.
The choices that inhabit TypeC are related w.r.t. �: ¾�w � W��a, b � Term�.w è

a�b"TypeC � uw�w ¬

.¾
F

w¬�w ¬¬

.¾�κ1, κ2 � C�.a �w¬¬ κ1 � b �w¬¬ κ2 � κ1 �w¬¬ κ2��

Choices obtained from worlds that compute to either κ0 or κ1 inhabit TypeC: ¾�w �

W��n � N��δ � N �. uw �w ¬

.�choice?�w ¬

, δ, n� �w¬ κ0 1 choice?�w ¬

, δ, n� �w¬ κ1�� � w è

�δ�n��"TypeC
Crucially, these properties allow TypeC’s inhabitants to be time-sensitive, i.e., to compute
to different choices in different extensions, which allows implementing choices with either
references or choice sequences. As shown in Ex. 13, we can then instantiate TypeC with
�-truncated types, which references inhabit.

Building up on the examples of choice operators presented in Exs. 5 and 6, we next
provide examples for the aforementioned properties of choices.

▶ Example 13. Both free-choice sequences, Fcs, and references, Ref, are extendable, immut-
able and reflected choices.
Extendable. νC�w� returns a choice name not occurring in w. For Fcs, startνC�w, r� adds a

new entry to w that creates a choice sequence with name νC�w� and restriction r (using
the first kind of entry mentioned in Ex. 5). For Ref, startνC�w, r� adds a new reference
cell to w with name νC�w� and restriction r (using the first kind of operation mentioned
in Ex. 6). In both cases, the properties are straightforward.

L. Cohen and V. Rahli 10:11

Immutable. For Fcs, freeze�δ, κ, w� extends w with a new entry (of the second kind from Ex. 5)
that adds a new choice κ to the choice sequence δ. mutable�δ, w� is always true since it
is always possible to extend choice sequences with new choices. For Ref, freeze�δ, κ, w�

updates w by changing the content of the reference cell δ to κ if it is mutable and marking
it as immutable; and mutable�δ, w� checks that δ is still mutable in w.

reflected. TypeC is �Nat in both cases, which is inhabited by κ0 � 0 and κ1 � 1. The other
properties follow from the semantics of �Nat. The use of � is crucial because without it
we would not be able to prove that choices obtained from worlds that compute to either
κ0 or κ1 inhabit TypeC, as reference cells can change value over time.

Next, we define the following two properties, which among other things allow proving (B)
above. Sec. 6.2.1 shows how those properties can be proved for concrete instances of u with
Beth bars. The first property requires that the choices corresponding to a name on which a
restriction r is imposed, can always eventually be retrieved and that they satisfy r .

▶ Definition 14 (Retrieving). The modality u is called retrieving if:
¾�w �W��δ � N ��n � N��r � Res�.compatible�δ, w, r�� uw�w ¬

.r n choice?�w ¬

, δ, n��

The second property states that if uwP then P is true in an extension of w, and this for
a specific class of worlds, namely those where only one choice has been made so far (possibly
multiple times) and is still mutable. This property allows following a sequence of worlds
where the same choice is picked for a given choice name.

▶ Definition 15 (Choice-following). The modality u is called choice-following if:
¾�δ � N ��w �W��P � Pw��r � Res�.Sat�w, δ, r�� uwP � ¿

F

w�w ¬

.P w ¬

0 Sat�w ¬

, δ, r��
where Sat�w, δ, r� � compatible�δ, w, r� 0mutable�δ, w� 0 OnlyChoice�w, δ, r�d�
and OnlyChoice�w, δ, κ� � ¾�n � N��κ

¬

� C�.choice?�w, δ, n� � κ
¬

� κ
¬

� κ.

Before we prove the negation of classical axioms, we first prove the following general
result. Note the use of � in Lem. 16, where ��T�U� captures a classical reading of “or”.

▶ Lemma 16. Let TTu

C be a type system where C is a non-trivial, extendable, immutable
and reflected set of choices and u is a retrieving, choice-following equality modality. Then,
the followings hold (see not_lem.lagda for details):

¾�w �W�. ustartνC�w,r� �w
¬

.�w ¬

è ΣC�w�� 1¾
F

w¬�w ¬¬

. w ¬¬

è ΣC�w���

¾�w �W�. startνC�r , w� è ��ΣC�w�� ΣC�w��

where (1) Σchoice�δ, κ� � Σk�Nat.��δ�k���κ"TypeC�; (2) ΣC�w� � Σchoice�νC�w�, κ1�;
and (3) r � �res, d� is the restriction where res � λn, κ.�κ � κ0 1 κ � κ1� and d � κ0.

Proof. As the second statement is a straightforward consequence of the first, we only sketch
a proof of the first. Let w "W. By extendability, we derive a new choice name δ, namely
νC�w�, and an extension startνC�w, r� of w, where the only choice made so far for δ is κ0,
and such that mutable�δ, startνC�w, r��, by immutability. We assume ustartνC�w,r��w

¬

.�w ¬

è

ΣC�w�� 1 ¾
F

w¬�w ¬¬

. w ¬¬

è ΣC�w���, and by the choice-following property we can derive
a world w ¬

G startνC�w, r�, where the only choice made so far for δ is κ0, and such that
w ¬

è ΣC�w� or ¾F

w¬�w ¬¬

. w ¬¬

è ΣC�w��. We now derive a contradiction in both cases:
w ¬

è ΣC�w�: By the choice-following property and the meaning of ΣC�w�, we derive that
there exists k " N such that δ�k� and κ1 are equal members of the type TypeC in some
world w ¬¬

G w ¬, where the only choice so far associated with δ is κ0. Since the modality
is retrieving and choice-following, we can further derive a world w ¬¬¬

G w ¬¬ where δ�k�

computes to a choice κ satisfying r (therefore, either κ � κ0 or κ � κ1), and again where
the only choice so far associated with δ is κ0. We derive that δ�k� computes to κ0, which
cannot be equal to κ1, from which we obtain a contradiction.

FSCD 2022

https://github.com/vrahli/opentt/blob/master/not_lem.lagda

10:12 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

¾
F

w¬�w ¬¬

. w ¬¬

è ΣC�w��: By immutability, we build the world w ¬¬

� freeze�δ, κ1, w ¬

� G w ¬,
and get to assume w ¬¬

è Σchoice�δ, κ1�. The reflected choice and retrieving modality
entail w ¬¬

è Σchoice�δ, κ1�, from which we conclude a contradiction. Let us comment on
the use of freeze. Assume that when “freezing” κ1, it is the n

th choice being made for δ

in w ¬¬. Then, �δ n� computes to κ1 in w ¬¬. To derive w ¬¬

è Σchoice�δ, κ1� we must prove
that �δ n� computes to κ1, which using u3, we must do in a w ¬¬¬

G w ¬¬. Now, as some
computations are time-sensitive (such as those involving references), without immutability
it might not be that �δ n� computes to κ1 in w ¬¬¬. ◀

Using Lem. 16, we can derive the negation of classical axioms such as LEM, or the Limited
Principle of Omniscience (LPO) [6, p.9] (the above examples showed how to prove some of
the assumptions in this lemma for instances of C and u, and the others are described in
Sec. 6.2.1, as they rely on a concrete instance of u with Beth bars).

▶ Corollary 17 (Incompatibility with Classical Principles). Let TTu

C be a type system where
C is a non-trivial, extendable, immutable and reflected set of choices and u is a retrieving,
choice-following modality. Then, the following hold (see not_lem.lagda and not_lpo.lagda):

 LEM: ¾�w �W�. w è ΠP �Ui.��P� P �

 LPO: ¾�w �W�. w è Πf �Nat � Bool.���Σn�Nat.��f n����Πn�Nat. ��f n���

For LPO, we further assume that choices are Booleans, i.e., that TypeC from Def. 12 is Bool,
that κ0 is tt and that κ1 is ff (see Remark 18 for further details).

▶ Remark 18. As mentioned in Cor. 17, to prove LPO we further assume that choices
are Booleans, i.e., TypeC from Def. 12 is Bool, κ0 is tt and κ1 is ff. This is due to the
fact that LPO is stated in terms of a function in Nat � Bool, which we instantiate with
a choice sequence whose choices are restricted to Booleans to prove its negation. This is
possible because a free choices sequence name δ occurring in a world with a restriction
constraining its choices to be Booleans has type Nat � Bool because choices do not change
over time. However, a reference name δ occurring in world with a restriction constraining its
choices to be Booleans has type Nat � �Bool, and not Nat � Bool, because its choices can
change over time. However, we can prove the following alternative version of LPO, where
��T � � T�tt"�Bool, using references (see not_lpo_qtbool.lagda for details):

¾�w �W�. w è Πf �Nat � �Bool.���Σn�Nat.��f n����Πn�Nat. ��f n���

Furthermore, using results similar to the ones presented in Lem. 16, we can prove the
negation of Markov’s Principles (see not_mp.lagda for details):

¾�w �W�. w è Πf �Nat � Bool.� Πn�Nat. ��f n��� �Σn�Nat.��f n�

In addition to requiring that choices are Booleans as for LPO, the proof also requires that
mutable is always true (even if we had used �Bool instead of Bool), which only holds about
free-choice sequences but not references.

5.2 Agnostic Theories
This section introduces the following general property of modalities that enables proving LEM,
leading to “agnostic” instances of TTu

C , in the sense that they support classical reasoning.

▶ Definition 19 (Jumping). The modality uw is called jumping if:
¾�w �W��P � Pw�.¾

F

w�w1.¿
F

w1�w2. uw2 P ��� uwP

https://github.com/vrahli/opentt/blob/master/not_lem.lagda
https://github.com/vrahli/opentt/blob/master/not_lpo.lagda
https://github.com/vrahli/opentt/blob/master/not_lem_qtbool.lagda
https://github.com/vrahli/opentt/blob/master/not_mp.lagda

L. Cohen and V. Rahli 10:13

Note that, classically, the negation of the choice-following property can be read as:
¿�δ � N ��w � W��P � Pw��r � Res�.Sat�w, δ, r� 0 uwP 0 ¾

F

w�w ¬

.Sat�w ¬

, δ, r� � �P w ¬

��.
Reading u as “always eventually” this says that there exists a property P , which is always
eventually true but there is no extension of the current world that satisfies Sat where P is
true. Thus, not all possible futures have to be covered for a property to be “always eventually”
true. The jumping property captures a similar behavior only requiring to prove that for all
w1 G w it is enough to exhibit one world w2 G w1 where P is “always eventually” true, to
derive that P is “always eventually” true. We now prove that TTu

C is compatible with LEM
when instantiated with jumping modalities.

▶ Lemma 20 (Compatibility with LEM). Let TTu

C be a type system where uw is a jumping
equality modality. Then, the following holds (classically): ¾�w �W�.w è ΠP �Ui.��P� P �.

Proof. By the semantics of the ΠP �Ui.��P� P �, it is enough to prove that for all w "W
and p " Term such that w è p"Ui, then uw�w ¬

.w ¬

è p1¾
F

w¬�w ¬¬

. w ¬¬

è p��. By the jumping
property, it is enough to prove ¾F

w�w1.¿
F

w1�w2. uw2 �w3.w3 è p 1¾
F

w3�w4. w4 è p����. Let
w1 G w, and we prove ¿Fw1�w2. uw2 �w3.w3 è p 1¾

F

w3�w4. w4 è p���. Using classical logic,
we can then prove this by cases (see lem.lagda for further details):

¿
F

w1�w2.w2 è p�: We obtain a w2 G w1 such that w2 è p. We instantiate our conclusion
using w2, and must prove uw2�w3.w3 è p1¾

F

w3�w4. w4 è p��. Using u4 it is enough to
prove ¾F

w2�w3.w3 è p 1¾
F

w3�w4. w4 è p��, which we prove by monotonicity of w2 è p.
 ¿

F

w1�w2.w2 è p�: We instantiate our conclusion using w1, and show that uw1�w3.w3 è

p1¾
F

w3�w4. w4 è p��. Using u4, it is enough to prove ¾F

w1�w3.w3 è p1¾
F

w3�w4. w4 è

p��. Therefore, assuming w3 G w1, it remains to show w3 è p 1¾
F

w3�w4. w4 è p�, and
since the right disjunct is provable, this contradicts our assumption. ◀

6 Bars

The notion of topological spaces of bars is typically used in possible worlds semantics
to capture the intuitive notion of time progression and provide a forcing interpretation.
Therefore, this section provides an abstract definition of this notion and establishes the
connection to the aforementioned equality modalities. Concretely, we offer a notion of
monotone bars that we then use to instantiate the equality modalities with.

6.1 Bar Spaces
The opens of a topological bar space are collections of worlds. To define a topological space
of bars, one needs to describe the “shape” of the opens in the space through a predicate,
which specifies when an open belongs to the space. Given a bar space, a bar in that space is
an open (a collection of worlds) that satisfies the predicate specifying the space.

▶ Definition 21 (Bars). Let O �W � P be the set of predicates on worlds, which we call
opens, and let BarProp �W � O � P be the set of predicates on opens. An open o is said
to be a bar in B " BarProp w.r.t. a world w if: (1) it satisfies �B w o�, (2) all its elements
extend w, and (3) it is upward closed w.r.t. F (i.e., if w1 F w2 and �o w1� then �o w2�). We
denote the set of all bars in B w.r.t. w by Bw

B.

Intuitively, given B " BarProp, �B w o� specifies whether o “bars” the world w. We write
w<o"B for �B w o�, and w ¬

" o for �o w ¬

�.

▶ Definition 22 (Bar Spaces). B " BarProp is called a bar space if it satisfies the followings:

FSCD 2022

https://github.com/vrahli/opentt/blob/master/lem.lagda

10:14 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

isect�B� � ¾�w �W��o1, o2 � O�.w<o1"B � w<o2"B � w<�o1=o2�"B,
where o1=o1 " O � λw0.¿�w1, w2 �W�.w1 " o1 0 w2 " o2 0 w1 F w0 0 w2 F w0.
union�B� � ¾�w �W��b � Bw

B��i � ¾w ¬

G w.w ¬

" b � Bw¬

B �.w<�<�i��"B,
where <�i� " O � λw0.¿w1 G w.¿�j � w1 " b�.w0 " �i w1 j�, given i " ¾w ¬

G w.w ¬

" b �
Bw¬

B .
top�B� � ¾�w �W�.w<�ã�w��"B, where ã�w� " O � λw0.w F w0.
nono�B� � ¾�w �W��b � Bw

B�.¿
F

w�w ¬

.w ¬

" b�.
sub�B� � ¾�w1, w2 �W��o � O�.w1 F w2 � w1<o"B � w2<�oCw2�"B,
where oCw " O � λw0.¿�w1 �W�.w1 " o 0 w1 F w0 0 w F w0.

We denote by BarSpace the set of all bar spaces.

That is, a bar space B is a set of opens that is closed under binary intersections (i.e.,
isect�B�) and arbitrary unions (i.e., union�B�), contains a top element (i.e., top�B�), all its
elements are non-empty (i.e., nono�B�), and is closed under subsets (i.e., sub�B�).

For w " W, P " Pw, B " BarSpace, and b " Bw
B, we write P " b for ¾w ¬

G w.w ¬

" b �
P w

¬, i.e., P holds at the bar b, i.e., for all elements in b. Let ¿Bw
B " Pw � P be defined as

λP.�¿�b � Bw
B�.P " b�, i.e., that P holds in some bar of the space B. Using this definition,

we next show that any bar space B induces an equality modality.

▶ Proposition 23. If B " BarSpace and w "W, then ¿Bw
B is an equality modality.

Proof. Given the properties of a bar space, we derive corresponding properties for bars in
Bw

B, and in turn, the properties of an equality modality. In particular, sub�B� allows deriving
u1, isect�B� allows deriving u2, union�B� allows deriving u3, nono�B� allows deriving u5,
and top�B� allows deriving u4. See Appx. C and bar.lagda for further details. ◀

Let TTB
C be the theory TTu

C , where u is derived from B " BarSpace using Prop. 23.

▶ Corollary 24. For any choice operator C and B " BarSpace, TTB
C is a type system in the

sense of Thm. 9.

6.2 Examples of Bar Spaces
We next present three bar space examples, namely Beth bars in Def. 26, open bars in Def. 29,
and Kripke bars in Def. 31, and use them to provide concrete instances for intuitionistic and
agnostic theories. In particular, we show that the choice-following property, which is key in
proving compatibility with LEM, is satisfied by Beth bars but not by open bars.

6.2.1 Beth Bars
As presented below, a Beth bar is defined so that for any infinite sequence of worlds ordered by
F, there exists a world in that sequence belonging to the bar. However, for Beth bars to satisfy
the retrieving property presented in Def. 14, we must also ensure that for any choice name δ

occurring in a world w in a chain, there is a w ¬

G w in that chain such that choice?�w ¬

, δ, n�

is defined. To this end we introduce a predicate progress " N � W � W � P, which we
show how to instantiate in Exs. 27 and 28, as well as the concept of (progressing) chains:

▶ Definition 25 (Chains & Barred Chains). Let chain�w� be the set of sequences of worlds
in N � W such that c " chain�w� iff (1) w F c 0, (2) for all i " N, c i F c �i � 1�;
and (3) c is progressing, i.e., ¾�δ � N ��n � N��r � Res�.compatible�δ, �c n�, r� � ¿m %

n.progress�δ, �c n�, �c m��. We say that a chain c " chain�w� is barred by an o " O, denoted
barredChain�o, c�, if there exists a world w ¬

F �c n� for some n " N such that w ¬

" o.

Using chains, we define Beth bars as follows:

https://github.com/vrahli/opentt/blob/master/mod.lagda

L. Cohen and V. Rahli 10:15

▶ Definition 26 (Beth Bars). Beth bars are defined by the following bar predicate Beth �
λw.λo.¾�c � chain�w��.barredChain�o, c�, which is a bar space due to the properties of chains.4

We now show through the following two examples how to define Beth bars, and how they
induce a retrieving (Def. 14) and choice-following (Def. 15) modality, as required by Cor. 17.

▶ Example 27 (Beth Bars & Free-Choice Sequences). Building up on Ex. 13, we present
here an example where choices are free-choice sequences and bars are Beth bars, yielding an
intuitionistic theory TTBeth

Fcs (see worldInstanceCS.lagda and modInstanceBethCs.lagda for details).
This is the theory presented in [4].
Progress. For Fcs, progress�δ, w1, w2� states that the state of the choice sequence δ in w1 is

a strict initial segment of the state of the choice sequence δ in w2.
Retrieving. We prove this property by exhibiting a bar that given a choice name δ and a

n " N, requires its n
th choice to exist. We can prove that this forms a Beth bar thanks

to the fact that chains are required to always eventually make progress.
Choice-following. This property is true about Beth bars because they require all possible

chains of worlds extending a given world w to be “barred” by the bar. Given a choice
name δ that satisfies Sat�w, δ, r�, we can therefore pick a chain that repeatedly makes
the same choice for δ, and obtain a world along that chain, which is at the bar.

▶ Example 28 (Beth Bars & References). Building up on Ex. 13, we present here an example
where choices are references and bars as Beth bars, yielding an intuitionistic theory TTBeth

Ref
(see worldInstanceRef.lagda and modInstanceBethRef.lagda for details).
Progress. For Ref, progress�δ, w1, w2� states that if a reference cell named δ holds t in w1,

then it must also hold t
¬ in w2, such that t � t

¬ if the cell is not mutable in w1.
Retrieving. This property is trivial to prove for references because we need to exhibit a bar,

which given δ " N and n " N, requires δ’s n
th choice to exist, which necessarily does

because choice?�w, δ, n� disregards its argument n and returns δ’s current content in w.
Choice-following. This property is proved as for free-choice sequences.

6.2.2 Open Bars
Open bars [5] are more straightforwardly defined and do not require the concept of chains.

▶ Definition 29 (Open Bars). Open bars are defined by the following bar predicate: Open �
λw.λo.¾

F

w�w1.¿
F

w1�w2.w2 " o��, which forms a bar space.

The choice-following property does not hold for open bars due to the existential quantific-
ation in their definition, which allows different choices to be made. In fact, we can prove the
negation of the choice-following property for open bars. Given w0 "W , ¿�δ � N ��w �W��P �

Pw��r � Res�.Sat�w, δ, r� 0 uwP 0 ¾
F

w�w ¬

.Sat�w ¬

, δ, r� � �P w ¬

�� holds by instantiating δ

with νC�w0�, w with startνC�w0, r�, and P with λw ¬

. mutable�δ, w ¬

�, where r restricts the
choices to be either κ0 or κ1. Next we show that open bars induce a jumping modality,
which is required to prove Lem. 20.

▶ Example 30 (Open bars). The agnostic theory TTOpen
C , built upon open bars and an

arbitrary choice operator C, is compatible with classical logic (see lem.lagda). In [5] this
theory was presented specifically for Fcs. As choices are irrelevant to prove Lem. 20, we can

4 To be precise, to prove that Beth bars satisfy the nono property, we further require a function ChofW
from w "W to chain�w�.

FSCD 2022

https://github.com/vrahli/opentt/blob/master/worldInstanceCS.lagda
https://github.com/vrahli/opentt/blob/master/modInstanceCS.lagda
https://github.com/vrahli/opentt/blob/master/worldInstanceRef.lagda
https://github.com/vrahli/opentt/blob/master/modInstanceRef.lagda
https://github.com/vrahli/opentt/blob/master/lem.lagda

10:16 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

instantiate them with any suitable type, such as Ref or Fcs, and W can be any poset. It
remains to show that Open satisfies the jumping property, which follows from the definition
of open bars in terms of the existence of extensions of all extensions of the current world.

6.2.3 Kripke Bars
Let us present here another bar space, which allows capturing traditional Kripke semantics:

▶ Definition 31 (Kripke Bars). Kripke bars are defined by the following bar predicate:
Kripke � λw.λo.¾

F

w�w ¬

.w ¬

" o�, which is a predicate that given a world w requires opens to
contain all extensions of w. This also forms a bar space as proved in barKripke.lagda.

▶ Example 32 (Kripke bars). According to Prop. 23, this space leads in turn to an equality
modality, which captures traditional a Kripke semantics. However, as proved in kripkeCsNo-
tRetrieving.lagda, this modality is not retrieving when choices are free-choice sequences, and
therefore does not allow deriving the negation of classical axioms using Cor. 17. It is however
retrieving when choices are references because reference cells are always filled with a value.
We can then prove that the resulting equality modality along with references as choices
satisfy all the properties required for Cor. 17 (see modInstanceKripkeRefBool.lagda). Therefore,
the theory TTOpen

Ref is an intuitionistic theory, while TTOpen
Fcs is not.

7 Conclusions and Related Works

This paper provides a generic extensional type theory incorporating various time-progressing
elements along with a possible-worlds forcing interpretation parameterized by modalities,
which when instantiated with topological spaces of bars leads to a general sheaf model. We
have opted for a general framework, both in terms of the choice operators it can embed
and its modality-based semantics. This is so that our system is abstract enough to capture
other general models from the literature, as well as for it to contain a wide class of theories,
allowing us to reason collectively about their (in)compatibility with classical reasoning. Much
remains to be explored to fully utilize our general framework to study the relation with
classical reasoning. For one, the choice and modality properties presented in Sec. 5 provide
sufficient conditions for determining the relation of the corresponding theories to classical
reasoning. Further work is required to establish whether they are also necessary.

Other sheaf models for choice-like concepts have been proposed in the literature. We
mention a few concrete examples that are most closely related to our general framework.
In [19], the author provides a sheaf model of predicate logic extended with non-constructive
objects such as choice sequences, where formulas are interpreted w.r.t. a forcing interpretation
parameterized by a site. In [42], the authors provide sheaf models for the intuitionistic
theories LS [38] and CS [27] featuring choice sequences, where formulas are essentially
interpreted w.r.t. a forcing interpretation over the Baire space. In [12, 13], the authors prove
the uniform continuity of a Martin-Löf-like intensional type theory using forcing, and extract
an algorithm that computes a uniform modulus of continuity. In [23] the authors introduce
a forcing translation for the Calculus of Inductive Constructions (CIC) [31] extended with
effects, which crucially preserves definitional equality. In [14], the independence of MP with
Martin-Löf’s type theory is established through a forcing interpretation, with sequences of
Booleans as forcing conditions, by following Brouwer’s argument that it is not decidable
whether a choice sequence of Booleans will remain true for ever or become eventually false.

https://github.com/vrahli/opentt/blob/master/barKripke.lagda
https://github.com/vrahli/opentt/blob/master/kripkeCsNotRetrieving.lagda
https://github.com/vrahli/opentt/blob/master/kripkeCsNotRetrieving.lagda
https://github.com/vrahli/opentt/blob/master/modInstanceKripkeRefBool.lagda

L. Cohen and V. Rahli 10:17

Related to our work is also the line of work, starting from [33], on building syntactic models
of CIC, by translating CIC extended with logical principles and effects into itself. Using this
technique, in [7], the authors present syntactic models through which properties can be added
to negative types, allowing them to prove independent results, e.g., the independence of
function extensionality in intentional type theory. In [34], the authors present a translation,
where the resulting type theory features exceptions, which is consistent if the target theory
is when exceptions are required to be caught locally. The authors use this translation to
exhibit syntactic models of CIC which validate the independence of premise axiom, but
not MP. In [36], the authors solve the problem of the restriction on exceptions in [34] by
introducing a layered type theory with exceptions, which separates the consistency and
effectful programming concerns. In [32] the authors present a syntactic presheaf model of
CIC, which solves issues with dependent elimination present in [23], and allows extending
CIC with MP. In [35], the authors go back to these dependent elimination issues and present
a new version of call-by-push-value which allows combining effects and dependent types.

Also connected to our work are the generic modal theories introduced in [21, 20]. In [21],
the authors present a Martin-Löf type theory extended with an S4-style necessity modality,
which satisfies normalization and decidability of type checking. To guarantee that the
modality is an S4 necessity modality, this theory imposes restrictions on the terms inhabiting
modalities, which are enforced through a “locking” mechanism. The generic modal type
theory presented in [20] goes one step further from [21] by supporting multiple interacting
modalities. Both theories share the goal of generically capturing hand-crafted modal theories,
while we in particular focus on modalities “compatible” with choice operators.

References
1 Agda wiki. URL: http://wiki.portal.chalmers.se/agda/pmwiki.php.
2 Stuart F. Allen. A non-type-theoretic definition of Martin-Löf’s types. In LICS, pages 215–221.

IEEE Computer Society, 1987.
3 Michael J. Beeson. Foundations of Constructive Mathematics. Springer, 1985.
4 Mark Bickford, Liron Cohen, Robert L. Constable, and Vincent Rahli. Computability beyond

church-turing via choice sequences. In Anuj Dawar and Erich Grädel, editors, LICS 2018,
pages 245–254. ACM, 2018. doi:10.1145/3209108.3209200.

5 Mark Bickford, Liron Cohen, Robert L. Constable, and Vincent Rahli. Open bar - a brouwerian
intuitionistic logic with a pinch of excluded middle. In Christel Baier and Jean Goubault-
Larrecq, editors, CSL, volume 183 of LIPIcs, pages 11:1–11:23. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CSL.2021.11.

6 E. Bishop. Foundations of constructive analysis, volume 60. McGraw-Hill New York, 1967.
7 Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. The next 700 syntactical models

of type theory. In Yves Bertot and Viktor Vafeiadis, editors, CPP 2017, pages 182–194. ACM,
2017. doi:10.1145/3018610.3018620.

8 Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics. London
Mathematical Society Lecture Notes Series. Cambridge University Press, 1987. URL:
http://books.google.com/books?id=oN5nsPkXhhsC.

9 L. E. J Brouwer. Begründung der mengenlehre unabhängig vom logischen satz vom aus-
geschlossen dritten. zweiter teil: Theorie der punkmengen. Koninklijke Nederlandse Akademie
van Wetenschappen te Amsterdam, 12(7), 1919.

10 Paul J. Cohen. The independence of the continuum hypothesis. the National Academy of
Sciences of the United States of America, 50(6):1143–1148, December 1963.

11 Paul J. Cohen. The independence of the continuum hypothesis ii. the National Academy of
Sciences of the United States of America, 51(1):105–110, January 1964.

FSCD 2022

http://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1145/3209108.3209200
https://doi.org/10.4230/LIPIcs.CSL.2021.11
https://doi.org/10.1145/3018610.3018620
http://books.google.com/books?id=oN5nsPkXhhsC

10:18 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

12 Thierry Coquand and Guilhem Jaber. A note on forcing and type theory. Fundam. Inform.,
100(1-4):43–52, 2010. doi:10.3233/FI-2010-262.

13 Thierry Coquand and Guilhem Jaber. A computational interpretation of forcing in type theory.
In Peter Dybjer, Sten Lindström, Erik Palmgren, and Göran Sundholm, editors, Epistemology
versus Ontology, volume 27 of Logic, Epistemology, and the Unity of Science, pages 203–213.
Springer, 2012. doi:10.1007/978-94-007-4435-6_10.

14 Thierry Coquand and Bassel Mannaa. The independence of markov’s principle in type theory.
In Delia Kesner and Brigitte Pientka, editors, FSCD 2016, volume 52 of LIPIcs, pages 17:1–
17:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.FSCD.
2016.17.

15 Karl Crary. Type-Theoretic Methodology for Practical Programming Languages. PhD thesis,
Cornell University, Ithaca, NY, August 1998.

16 M. J. Cresswell and G. E. Hughes. A New Introduction to Modal Logic. Routledge, 1996.
17 Michael A. E. Dummett. Elements of Intuitionism. Clarendon Press, second edition, 2000.
18 VH Dyson and Georg Kreisel. Analysis of Beth’s semantic construction of intuitionistic logic.

Stanford University. Applied Mathematics and Statistics Laboratories, 1961.
19 Michael P. Fourman. Notions of choice sequence. In A.S. Troelstra and D. van Dalen,

editors, The L. E. J. Brouwer Centenary Symposium, volume 110 of Studies in Logic and
the Foundations of Mathematics, pages 91–105. Elsevier, 1982. doi:10.1016/S0049-237X(09)
70125-9.

20 Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. Multimodal dependent
type theory. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors,
LICS, pages 492–506. ACM, 2020. doi:10.1145/3373718.3394736.

21 Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. Implementing a modal dependent type
theory. Proc. ACM Program. Lang., 3(ICFP):107:1–107:29, 2019. doi:10.1145/3341711.

22 Arend Heyting. Intuitionism: an introduction. North-Holland Pub. Co., 1956.
23 Guilhem Jaber, Gabriel Lewertowski, Pierre-Marie Pédrot, Matthieu Sozeau, and Nicolas

Tabareau. The definitional side of the forcing. In Martin Grohe, Eric Koskinen, and Natarajan
Shankar, editors, LICS ’16, pages 367–376. ACM, 2016. doi:10.1145/2933575.2935320.

24 Stephen C. Kleene and Richard E. Vesley. The Foundations of Intuitionistic Mathematics,
especially in relation to recursive functions. North-Holland Publishing Company, 1965.

25 Georg Kreisel. A remark on free choice sequences and the topological completeness proofs. J.
Symb. Log., 23(4):369–388, 1958. doi:10.2307/2964012.

26 Georg Kreisel and Anne S. Troelstra. Formal systems for some branches of intuitionistic analysis.
Annals of Mathematical Logic, 1(3):229–387, 1970. doi:10.1016/0003-4843(70)90001-X.

27 Georg Kreisel and Anne S. Troelstra. Formal systems for some branches of intuitionistic
analysis. Annals of mathematical logic, 1(3):229–387, 1970.

28 Saul A. Kripke. Semantical analysis of modal logic i. normal propositional calculi. Zeitschrift
fur mathematische Logik und Grundlagen der Mathematik, 9(5-6):67–96, 1963. doi:10.1002/
malq.19630090502.

29 Saul A. Kripke. Semantical analysis of intuitionistic logic i. In J.N. Crossley and M.A.E.
Dummett, editors, Formal Systems and Recursive Functions, volume 40 of Studies in Logic and
the Foundations of Mathematics, pages 92–130. Elsevier, 1965. doi:10.1016/S0049-237X(08)
71685-9.

30 Joan R. Moschovakis. An intuitionistic theory of lawlike, choice and lawless sequences. In Logic
Colloquium’90: ASL Summer Meeting in Helsinki, pages 191–209. Association for Symbolic
Logic, 1993.

31 Christine Paulin-Mohring. Introduction to the Calculus of Inductive Constructions. In
Bruno Woltzenlogel Paleo and David Delahaye, editors, All about Proofs, Proofs for All,
volume 55 of Studies in Logic (Mathematical logic and foundations). College Publications,
January 2015. URL: https://hal.inria.fr/hal-01094195.

https://doi.org/10.3233/FI-2010-262
https://doi.org/10.1007/978-94-007-4435-6_10
https://doi.org/10.4230/LIPIcs.FSCD.2016.17
https://doi.org/10.4230/LIPIcs.FSCD.2016.17
https://doi.org/10.1016/S0049-237X(09)70125-9
https://doi.org/10.1016/S0049-237X(09)70125-9
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3341711
https://doi.org/10.1145/2933575.2935320
https://doi.org/10.2307/2964012
https://doi.org/10.1016/0003-4843(70)90001-X
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1016/S0049-237X(08)71685-9
https://doi.org/10.1016/S0049-237X(08)71685-9
https://hal.inria.fr/hal-01094195

L. Cohen and V. Rahli 10:19

32 Pierre-Marie Pédrot. Russian constructivism in a prefascist theory. In Holger Hermanns,
Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS, pages 782–794. ACM, 2020.
doi:10.1145/3373718.3394740.

33 Pierre-Marie Pédrot and Nicolas Tabareau. An effectful way to eliminate addiction to
dependence. In LICS 2017, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.
2017.8005113.

34 Pierre-Marie Pédrot and Nicolas Tabareau. Failure is not an option - an exceptional type
theory. In Amal Ahmed, editor, ESOP 2018, volume 10801 of LNCS, pages 245–271. Springer,
2018. doi:10.1007/978-3-319-89884-1_9.

35 Pierre-Marie Pédrot and Nicolas Tabareau. The fire triangle: how to mix substitution,
dependent elimination, and effects. Proc. ACM Program. Lang., 4(POPL):58:1–58:28, 2020.
doi:10.1145/3371126.

36 Pierre-Marie Pédrot, Nicolas Tabareau, Hans Jacob Fehrmann, and Éric Tanter. A reasonably
exceptional type theory. Proc. ACM Program. Lang., 3(ICFP):108:1–108:29, 2019. doi:
10.1145/3341712.

37 Andrew M Pitts. Nominal sets: Names and symmetry in computer science, volume 57 of
cambridge tracts in theoretical computer science, 2013.

38 Anne S. Troelstra. Choice sequences: a chapter of intuitionistic mathematics. Clarendon Press
Oxford, 1977.

39 Anne S. Troelstra. Choice sequences and informal rigour. Synthese, 62(2):217–227, 1985.
40 Mark van Atten and Dirk van Dalen. Arguments for the continuity principle. Bulletin

of Symbolic Logic, 8(3):329–347, 2002. URL: http://www.math.ucla.edu/~asl/bsl/0803/
0803-001.ps, doi:10.2178/bsl/1182353892.

41 Dirk van Dalen. An interpretation of intuitionistic analysis. Annals of mathematical logic,
13(1):1–43, 1978.

42 Gerrit Van Der Hoeven and Ieke Moerdijk. Sheaf models for choice sequences. Annals of Pure
and Applied Logic, 27(1):63–107, 1984. doi:10.1016/0168-0072(84)90035-6.

43 Wim Veldman. Understanding and using Brouwer’s continuity principle. In Reuniting the
Antipodes — Constructive and Nonstandard Views of the Continuum, volume 306 of Synthese
Library, pages 285–302. Springer Netherlands, 2001. doi:10.1007/978-94-015-9757-9_24.

44 Beth E. W. Semantic construction of intuitionistic logic. Journal of Symbolic Logic, 22(4):363–
365, 1957.

A TTu

C’s Inference Rules

In TTu

C , sequents are of the form h1, . . . , hn à t � T . Such a sequent denotes that, assuming
h1, . . . , hn, the term t is a member of the type T , and that therefore T is a type. The term t

in this context is called the extract of T . Extracts are sometimes omitted when irrelevant
to the discussion. An hypothesis h is of the form x�A, where the variable x stands for the
name of the hypothesis and A its type. A rule is a pair of a conclusion sequent S and a list
of premise sequents, S1,�, Sn (written as usual using a fraction notation, with the premises
on top). Let us now provide a sample of TTu

C ’s key inference rules for some of its types not
discussed above. In what follows, we write a"A for a�a"A.

Products. The following rules are the standard Π-elimination rule, Π-introduction rule,
type equality for Π types, and λ-introduction rule, respectively.

H , f �Πx�A.B, J à a"A H , f �Πx�A.B, J, z�f�a�"B�x¯a� à e � C

H , f �Πx�A.B, J à e�z¯�� � C

H , z�A à b � B�x¯z� H à A"Ui

H à λz.b � Πx�A.B

H à A1�A2"Ui H , y�A1 à B1�x1¯y��B2�x2¯y�"Ui

H à Πx1�A1.B1�Πx2�A2.B2"Ui

H , z�A à t1�x1¯z��t2�x2¯z�"B�x¯z� H à A"Ui

H à λx1.t1�λx2.t2"Πx�A.B

FSCD 2022

https://doi.org/10.1145/3373718.3394740
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1007/978-3-319-89884-1_9
https://doi.org/10.1145/3371126
https://doi.org/10.1145/3341712
https://doi.org/10.1145/3341712
http://www.math.ucla.edu/~asl/bsl/0803/0803-001.ps
http://www.math.ucla.edu/~asl/bsl/0803/0803-001.ps
https://doi.org/10.2178/bsl/1182353892
https://doi.org/10.1016/0168-0072(84)90035-6
https://doi.org/10.1007/978-94-015-9757-9_24

10:20 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

Note that the last rule requires to prove that A is a type because the conclusion requires to
prove that Πx�A.B is a type, and the first hypothesis only states that B is a type family
over A, but does not ensures that A is a type. Furthermore, the following rules are the
standard function extensionality and β-reduction rules, respectively:

H , z�A à f1�z��f2�z�"B�x¯z� H à A"Ui

H à f1�f2"Πx�A.B

H à t�x¯s��u"T

H à �λx.t� s�u"T

Sums. The following rules are the standard Σ-elimination rule, Σ-introduction rule, type
equality for the Σ type, pair-introduction, and spread-reduction rules, respectively:

H , p�Σx�A.B, a�A, b�B�x¯a�, J�p¯�a, b�� à e � C�p¯�a, b��

H , p�Σx�A.B, J à let a, b � p in e � C

H à a"A H à b"B�x¯a� H , z�A à B�x¯z�"Ui

H à �a, b� � Σx�A.B

H à A1�A2"Ui H , y�A1 à B1�x1¯y��B2�x2¯y�"Ui

H à Σx1�A1.B1�Σx2�A2.B2"Ui

H , z�A à B�x¯z�"Ui H à a1�a2"A H à b1�b2"B�x¯a1�

H à �a1, b1���a2, b2�"Σx�A.B

H à u�x¯s; y¯t��t2"T

H à let x, y � �s, t� in u�t2"T

Equality. The following rules are the standard equality-introduction rule, equality-
elimination rule, hypothesis rule, symmetry and transitivity rules, respectively.

H à A�B"Ui H à a1�b1"A H à a2�b2"B

H à �a1�a2"A���b1�b2"B�"Ui

H , z�a�b"A, J�z¯�� à e � C�z¯��

H , z�a�b"A, J à e � C

H , x�A, J à x"A

H à b�a"T

H à a�b"T

H à a�c"T H à c�b"T

H à a�b"T

The following rules allow fixing the extract of a sequent, and rewriting with an equality
in an hypothesis, respectively:

H à t � T

H à t"T

H , x�B, J à t � C H à A�B"Ui

H , x�A, J à t � C

Universes. Let i be a lower universe than j. The following rules are the standard universe-
introduction rule and the universe cumulativity rule, respectively.

H à Ui�Ui"Uj

H à T"Uj

H à T"Ui

Sets. The following rule is the standard set-elimination rule:

H , z�rx � A ¶ Bx, a�A, b�B�x¯a� , J�z¯a� à e � C�z¯a�

H , z�rx � A ¶ Bx, J à e�a¯z� � C

Note that we have used a new construct in the above rule: the hidden hypothesis b�B�x¯a� .
The main feature of hidden hypotheses is that their names cannot occur in extracts (which
is why we “box” those hypotheses). Intuitively, this is because the proof that B is true is
discarded in the proof that the set type rx � A ¶ Bx is true and therefore cannot occur in
computations. Hidden hypotheses can be unhidden using the following rule:

H , x�T, J à � � a�b"A

H , x�T , J à � � a�b"A

which is valid since the extract is � and therefore does not make use of x.

L. Cohen and V. Rahli 10:21

The following rules are the standard set-introduction rule, type equality for the set type,
and introduction rule for members of set types, respectively.

H à a"A H à B�x¯a� H , z�A à B�x¯z�"Ui

H à a � rx � A ¶ Bx

H à A1�A2"Ui H , y�A1 à B1�x1¯y��B2�x2¯y�"Ui

H à rx1 � A1 ¶ B1x�rx2 � A2 ¶ B2x"Ui

H , z�A à B�x¯z�"Ui H à a�b"A H à B�x¯a�

H à a�b"rx � A ¶ Bx

Disjoint Unions. The following rules are the disjoint union-elimination, disjoint union-
introduction (left and right), type equality for disjoint unions, injection-introduction (left
and right), and decide-reduction (left and right) rules, respectively:

H , d�A�B, x�A, J�d¯inl�x�� à t � C�d¯inl�x�� H , d�A�B, y�B, J�d¯inr�y�� à u � C�d¯inr�y��

H , d�A�B, J à case d of inl�x�� t | inr�y�� u � C

H à a � A H à B"Ui

H à inl�a� � A�B

H à b � B H à A"Ui

H à inr�b� � A�B

H à A1�A2"Ui H à B1�B2"Ui

H à A1�B1�A2�B2"Ui

H à a1�a2"A H à B"Ui

H à inl�a1��inl�a2�"A�B

H à b1�b2"B H à A"Ui

H à inr�b1��inr�b2�"A�B

H à t�x¯s��t2"T

H à �case inl�s� of inl�x�� t | inr�y�� u��t2"T

H à u�y¯s��t2"T

H à �case inr�s� of inl�x�� t | inr�y�� u��t2"T

Time-Quotients. The following rules are the introduction and type equality rules for the
time-quotienting type. Note that in practice more terms than the ones in A can be shown to
be in �A. For example, given a choice name δ with a restriction that constrains its choices
to be elements of A, we can prove that δ�n�, for n " N is in �A, even though δ�n� might
change over time. Devising such rules, as well as elimination rules, is left for future work.

H à a � A

H à a � �A

H à A�B"Ui

H à �A��B"Ui

H à a�b"A

H à a�b"�A

B Equality Modalities

As mentioned in Sec. 4, our forcing interpretation relies on a pair of a modality u and a
dependent modality �. The version of this interpretation presented there is a consequence of
the formal definition, which involves both modalities. Let us now describe this definition
in this section (see forcing.lagda for further details). We define in Fig. 3 an w èl T1�T2 set,
which compared to the one presented in Sec. 4, contains a universe level annotation l, which
is simply here a N. In addition, that figure defines a recursive function w èl a�b"e, which
recurses over e " w èl T1�T2, and again contains a universe level annotation compared
to the one presented in Sec. 4. This inductive-recursive definition is defined recursively
over universe levels. The function w è a�b"T presented in Sec. 4 can then be defined as
¿�l � N��e � w èl T �T �.w è a�b"e.

Let us now formally introduce the dependent modality �i
w, along with its properties.

First, we introduce a dependent version of the set Pw as follows: the collection of predicates
in ¾w ¬

G w.P w ¬

� P for P " Pw, is denoted PP
w . The dependent modality �i

w " PP
w � P,

where P " Pw � P and i " uwP , is called a dependent equality modality
Note that as for members of Pw, due to F’s transitivity, if Q " PP

w , where P " Pw, then
for every w ¬

G w, it naturally extends to a predicate in PP
w¬ . Also, note that property u1 in

Def. 8 can be viewed as defining a lifting operator �w¬i, which returns a uw¬P , given a w ¬

G w
and i " uwP as specified there. This lifting operator will be used to state �i

w’s properties.
We can now state �i

w’s properties, which are counterparts of properties u1,u2,u3:

FSCD 2022

https://github.com/vrahli/opentt/blob/master/forcing.lagda

10:22 Constructing Unprejudiced Extensional Type Theories with Choices via Modalities

Inductive relation:
w èl T1�T2 ��� NAT��T1 ¹w Nat 0 T2 ¹w Nat�

¶ PI�
����
¿�x � Var��A1, A2, B1, B2 � Term��e � ¾F

w�w ¬

.w ¬

èl A1�A2��.
T1 ¹w Πx�A1.B1 0 T2 ¹w Πx�A2.B2
0¾

F

w�w ¬

.¾�a, b � Term�.w ¬

èl a�b"�e w ¬�� w ¬

èl B1�x¯a��B2�x¯b��

���

¶ SUM�
����
¿�x � Var��A1, A2, B1, B2 � Term��e � ¾F

w�w ¬

.w ¬

èl A1�A2��.
T1 ¹w Σx�A1.B1 0 T2 ¹w Σx�A2.B2
0¾

F

w�w ¬

.¾�a, b � Term�.w ¬

èl a�b"�e w ¬�� w ¬

èl B1�x¯a��B2�x¯b��

���

¶ SET�
����
¿�x � Var��A1, A2, B1, B2 � Term��e � ¾F

w�w ¬

.w ¬

èl A1�A2��.
T1 ¹w rx � A1 ¶ B1x 0 T2 ¹w rx � A2 ¶ B2x
0¾

F

w�w ¬

.¾�a, b � Term�.w ¬

èl a�b"�e w ¬�� w ¬

èl B1�x¯a��B2�x¯b��

���

¶ UNION� �¿�A1, A2, B1, B2 � Term�.T1 ¹w A1�B1 0 T2 ¹w A2�B2
0¾

F

w�w ¬

.w ¬

èl A1�A2� 0¾F

w�w ¬

.w ¬

èl B1�B2�

¶ EQ�

����
¿�a1, a2, b1, b2, A, B � Term��e � ¾F

w�w ¬

.w ¬

èl A�B��.
T1 ¹w a1�a2"A 0 T2 ¹w b1�b2"B

0¾
F

w�w ¬

.w ¬

èl a1�b1"�e w ¬�� 0¾F

w�w ¬

.w ¬

èl a2�b2"�e w ¬��

���

¶ QTIME��¿�A, B � Term�.T1 ¹w �A 0 T2 ¹w �B 0¾
F

w�w ¬

.w ¬

èl A�B��¶ MOD��uw�w ¬

.w ¬

èl T1�T2��¶ UNIV��¿�j $ l�.T1 ¹w Uj 0 T2 ¹w Uj�
Recursive function:
w èl t�t

¬

"NAT��c1, c2� � uw�w ¬

.¿�n � N�.t ¹w¬ n 0 t
¬

¹w¬ n�
w èl t�t

¬

"PI��x, A1, A2, B1, B2, e, c1, c2, f�
� uw�w ¬

.¾�a1, a2 � Term��i � w ¬

èl a1�a2"�e w ¬��.w ¬

èl �t a1���t¬ a2�"�f w ¬

a1 a2 i��
w èl t�t

¬

"SUM��x, A1, A2, B1, B2, e, c1, c2, f�
� uw �w ¬

.
¿�a1, a2, b1, b2 � Term��i � w ¬

èl a1�a2"�e w ¬��.
w ¬

èl b1�b2"�f w ¬

a1 a2 i� 0 t ¹w¬ �a1, b1� 0 t
¬

¹w¬ �a2, b2� �
w èl t�t

¬

"SET��x, A1, A2, B1, B2, e, c1, c2, f�
� uw�w ¬

.¿�b1, b2 � Term��i � w ¬

èl t�t
¬

"�e w ¬��.w ¬

èl b1�b2"�f w ¬

t t
¬

i��
w èl t�t

¬

"UNION��A1, A2, B1, B2, c1, c2, e, f�
� uw �w ¬

.¿�u, v � Term�. �t ¹w¬ inl�u� 0 t
¬

¹w¬ inl�v� 0 w ¬

èl u�v"�e w ¬��
1 �t ¹w¬ inr�u� 0 t

¬

¹w¬ inr�v� 0 w ¬

èl u�v"�f w ¬�� �
w èl t�t

¬

"EQ��a1, a2, b1, b2, A, B, e, c1, c2, i1, i2� � uw�w ¬

.w ¬

èl a1�a2"�e w ¬��
w èl t�t

¬

"QTIME��A, B, c1, c2, e� � uw�w ¬

.�λa, b.¿�c, d � Value�.a �w c 0 b �w d 0 w èl c�d"�e w ¬��� t t
¬�

w èl t�t
¬

"MOD��i� � �i
w�w ¬

.λ�j � w ¬

èl T1�T2�.w ¬

èl t�t
¬

"j�, where i is a proof of uw�w ¬

.w ¬

èl T1�T2�
w èl t�t

¬

"UNIV��j, c1, c2� � w èj t�t
¬

, where j $ l

Figure 3 Inductive-Recursive Forcing Interpretation.

�1: monotonicity of �: ¾�w �W��P � Pw��Q � PP
w ��i � uwP �.¾w ¬

G w. �i
w Q � ��w¬ i

w¬ Q.
This property defines a lifting operator �w¬j, which returns a ��w¬ i

w¬ Q, given a w ¬

G w and
j " �i

wQ as specified above.
�2: A version of the distribution axiom:

¾�w �W��P1, P2, P3 � Pw��Q1 � P
P1
w ��Q2 � P

P2
w ��Q3 � P

P3
w ��i1 � uwP1��i2 � uwP2��i3 � uwP3�.

�¾
F

w�w ¬

�¾�p1 � P1 w ¬

��p2 � P2 w ¬

��p3 � P3 w ¬

�.Q1 w ¬

p1 � Q2 w ¬

p2 � Q3 w ¬

p3�

� �i1
w Q1 � �i2

w Q2 � �i3
w Q3

�3: � follows from u�, i.e., a dependent version of C4:

¾�w �W��P � Pw��Q � PP
w ��i � uwP �. uw �w ¬

. ��w¬ i

w¬ Q�� �i
wQ

In addition, the two modalities u and � are required to satisfy the following properties
that allow deriving one from other in some contexts, namely that � follows from u and u
follows from �, respectively:

L. Cohen and V. Rahli 10:23

¾�w �W��P � Pw��Q � PP
w �. uw �w ¬

.¾�p � P w ¬

�.Q w ¬

p�� ¾�i � uwP �. �i
w Q

¾�w �W��P, R � Pw��Q � PP
w ��i � uwP �.¾

F

w�w ¬

�¾�p � P w ¬

�.Q w ¬

p� R w ¬

� �i
wQ� uwR

C Properties of the Bar Space

The properties of bar spaces presented in Def. 22 allow deriving corresponding bars as follows:
Intersection of bars. Given a bar predicate B " BarProp such that isect�B�, and two bars
b1, b2 " Bw

B for some world w, then b1=b2 " Bw
B: w<�b1=b2�"B follows from isect�B�; the

two other properties of bars follow from the definition of b1=b2.
Union of bars. Given a bar predicate B " BarProp such that union�B�, and a family of
bars i " ¾w ¬

G w.w ¬

" b � Bw¬

B for some world w, then <�i� " Bw
B: w<�<�i��"B follows

from union�B�; the two other properties of bars follow from the definition of <�i�.
Top bar. Given a bar predicate B " BarProp, such that top�B�, then ã�w� " Bw

B:
w<�ã�w��"B follows from top�B�; the two other properties of bars follow from the
definition of ã�w�.
Sub-bar. Given a bar predicate B " BarProp such that sub�B�, and a bar b " Bw

B for
some world w, then bCw¬ " Bw¬

B for any w ¬

G w: w<�bCw¬�"B follows from sub�B�; the
two other properties of bars follow from the definition of bCw¬ .

As mentioned in Prop. 23, ¿Bw
B, where B " BarSpace and w "W , is an equality modality.

We can derive the properties (see Def. 8) of this modality as follows:
To prove u1, we need to derive ¿Bw¬

B �P � from ¿Bw
B�P �, where w ¬

G w. As ¿Bw
B�P � gives

us a bar b " Bw
B, we can instantiate our conclusion with bCw¬ .

To prove u2, we need to derive ¿Bw
B�Q� from ¿Bw

B�λw ¬

.P w ¬

� Q w ¬

� and ¿Bw
B�P �. Our

first assumption gives us a bar b1 " Bw
B and our second assumption gives us a bar b2 " Bw

B.
We can then instantiate our conclusion with b1=b2.
To prove u3, we need to derive ¿Bw

B�P � from ¿Bw
B�λw ¬

.¿Bw¬

B �P ��. This assumption gives
us a bar b " Bw

B along with a function i " �λw ¬

.¿Bw¬

B �P �� " b. We can then instantiate
our conclusion with <�i�.
To prove u4, we need to derive ¿Bw

B�P � from ¾
F

w�P �. We can then instantiate our
conclusion using ã�w�, and have to prove P " ã�w�, which trivially follows from ¾

F

w�P �.
To prove u5, we need to derive P from ¿Bw

B�λw ¬

.P �. This assumption gives us a bar b
such that �λw ¬

.P � " b. From nono�B�, we obtain a w ¬

G w such that w ¬

" b. We can
then instantiate �λw ¬

.P � " b with w ¬, and we obtain P since it does not depend on a
world.

FSCD 2022

	1 Introduction
	2 Background
	2.1 Metatheory
	2.2 TT^{Box}_{C}'s Core Syntax and Operational Semantics

	3 TT^{Box}_{C}'s Time-Progressing Choice Operators
	3.1 Worlds
	3.2 Time-Progressing Choice Operators
	3.2.1 Standard Examples of Choice Operators

	3.3 Time-Truncation

	4 The Modality-based Forcing Interpretation
	5 Compatibility with Classical Axioms
	5.1 Intuitionistic Theories
	5.2 Agnostic Theories

	6 Bars
	6.1 Bar Spaces
	6.2 Examples of Bar Spaces
	6.2.1 Beth Bars
	6.2.2 Open Bars
	6.2.3 Kripke Bars

	7 Conclusions and Related Works
	A TT^{Box}_{C}'s Inference Rules
	B Equality Modalities
	C Properties of the Bar Space

