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Abstract. Induction and coinduction are both used extensively within
mathematics and computer science. Algebraic formulations of these prin-
ciples make the duality between them apparent, but do not account
well for the way they are commonly used in deduction. Generally, the
formalization of these reasoning methods employs inference rules that
express a general explicit (co)induction scheme. Non-well-founded proof
theory provides an alternative, more robust approach for formalizing
implicit (co)inductive reasoning. This approach has been extremely suc-
cessful in recent years in supporting implicit inductive reasoning, but
is not as well-developed in the context of coinductive reasoning. This
paper reviews the general method of non-well-founded proofs, and puts
forward a concrete natural framework for (co)inductive reasoning, based
on (co)closure operators, that offers a concise framework in which induc-
tive and coinductive reasoning are captured as we intuitively understand
and use them. Through this framework we demonstrate the enormous
potential of non-well-founded deduction, both in the foundational theoret-
ical exploration of (co)inductive reasoning and in the provision of proof
support for (co)inductive reasoning within (semi-)automated proof tools.

1 Introduction

The principle of induction is a key technique in mathematical reasoning that
is widely used in computer science for reasoning about recursive data types
(such as numbers or lists) and computations. Its dual principle—the princi-
ple of coinduction [49,69,70]—is not as widespread, and has only been investi-
gated for a few decades, but still has many applications in computer science,
e.g. [42,56,39,52,82,55,57]. It is mainly used for reasoning about coinductive data
types (codata), which are data structures containing non-well-founded elements,
e.g., infinite streams or trees. One prominent application of coinduction is as
a generic formalism for reasoning about state-based dynamical systems, which
typically contain some sort of circularity. It is key in proofs of the bisimula-
tion of state-transition systems (i.e., proving that two systems are behaviorally
equivalent) and is a primary method for reasoning about concurrent systems [53].

A duality between induction and coinduction is observed when formulating
them within an algebraic, or categorical, framework, e.g., [71,64,70,69]. Whereas
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induction corresponds to a least-fixed-point semantics (or initial algebras), coin-
duction corresponds to a greatest-fixed-point semantics (or final coalgebras).
However, such an algebraic formulation does not account well for the way these
principles are commonly used in deduction, where they are usually applied in dif-
ferent ways: induction to prove properties of certain collections, and coinduction
to show equivalences between processes and systems.

Since the principle of induction is so well-known, induction methods are
relatively well-developed. They are available in most (semi-)automated deduction
systems, and tools for the formal verification of software and hardware such as
theorem provers. Generally, implementations of the induction method employ
one or more inference rules that express a general explicit induction scheme that
holds for the elements being reasoned over. That is, to prove that some property,
say P , holds for all elements in an inductively defined set, we (i) show that it
holds for the initial elements, and (ii) show that P is preserved in the inductive
generation of new elements. A side-effect of such implementations is that in
applying inductive reasoning, the induction invariant must be provided explicitly.
While advanced provers offer powerful facilities for producing and manipulating
inductive goals, this still poses a major automation challenge. This formalization
of the induction principle uses the classical notion of formal proofs invoked in
standard theorem provers. There, proofs are well-founded trees, starting at the
goal and reaching axioms while proceeding by applications of inference rules.

A more robust and natural alternative formalization of inductive reasoning
is implicit induction, which avoids the need for explicitly specifying induction
invariants. This form of reasoning is enabled by extending the standard notion
of well-founded, finite proof trees into non-well-founded proof trees, where the
presence of cycles can be exploited instead of cluttering the proof with explicit
inductive invariants. For example, to prove P (x) using implicit induction, one
repeatedly decomposes the goal into subgoals that are either provable in the
standard way (via well-founded subtrees) or reducible back to P (x). This alter-
native has deep historic roots (originating in Fermat’s infinite-descent method)
and recently has seen a flourishing of its proof theory via cyclic proof systems.

Non-well-founded proof theory and its cyclic fragment (comprising only of
finite and regular proofs) have been extremely successful in recent years in sup-
porting implicit inductive reasoning. For one, the non-well-founded approach has
been used to obtain (optimal) cut-free completeness results for highly expressive
logics, such as the µ-calculus [3,35,34,37] and Kleene algebra [32,33], providing
further evidence of its utility for automation. Other works focus on the structural
proof theory of non-well-founded systems, where these promote additional insights
into standard proof-theoretical questions by separating local steps of deductive
inference from global well-foundedness arguments. In particular, syntactic cut
elimination for non-well-founded systems has been studied extensively in the
linear logic settings [41,7]. Much work has been devoted to the formal study of
explicit versus implicit forms of induction in various logical settings including the
µ-calculus [72,75,7,62], systems for arithmetics [74,31], and first-order logics with
inductive definitions [19,14,19]. The latter offers a system parameterized by a set
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of inductive predicates with associated rules, rather than a single rule for induc-
tion as with the others. The cyclic machinery has also been used to effectively
search for proofs of inductive properties and automatically verify properties of
inductive programs, especially in the context of separation logic [78,68,16,17,18].

Unlike induction, the coinduction principle has not been so fully and nat-
urally incorporated into major theorem provers, but it has gained importance
and attention in recent years. As noted by Basold, Komendantskaya, and Li:
“it may be surprising that automated proof search for coinductive predicates in
first-order logic does not have a coherent and comprehensive theory, even after
three decades...” [8]. Automated provers, to the best of our knowledge, cur-
rently do not offer any support for coinduction, and while coinductive data types
have been implemented in interactive theorem provers (a.k.a. proof assistants)
such as Coq [11,47,83], Nuprl [30], Isabelle [13,81,12,38], Agda [1], Lean [4],
and Dafny [54], the treatment of these forms of data is often partial. These
formalizations, as well as other formal frameworks that support the combina-
tion of induction and coinduction, e.g., [80,61,6,46], generally rely on making
(co)invariants explicit within proofs. But just as inductive reasoning is naturally
captured via proof cycles, cyclic systems seem to be particularly well-suited
for also encompassing the implicit notion of coinduction. Nonetheless, while
non-well-founded proof theory has been very successful in supporting inductive
reasoning, this proof method has not been equally incorporated and explored
in the context of coinductive reasoning. Some notable cyclic systems that do
support coinduction in various settings include [67,58,72,36,2]. Another related
framework is that of Coq’s parameterized coinduction [47,83], which offers a
different, but highly related, implicit nature of proofs (based on patterns within
parameters, rather than within proof sequents).

This paper reviews the general method of non-well-founded proof theory,
focusing on its use in capturing both implicit inductive and coinductive reasoning.
Throughout the paper we focus on one very natural and simple logical framework
to demonstrate the benefits of the approach—that of the transitive (co)closure
logic. This logic offers a succinct and intuitive dual treatment to induction and
coinduction, while still supporting their common practices in deduction, making
it great for prototyping. More specifically, it has the benefits of (1) conciseness: no
need for a separate language or interpretation for definitions, nor for fully general
least/greatest-fixed-point operators; (2) intuitiveness: the concept of transitive
closure is basic, and the dual closure is equally simple to grasp, resulting in
a simpler metatheory; (3) illumination: similarities, dualities, and differences
between induction and coinduction are clearly demonstrated; and (4) naturality:
local reasoning is rudimentary, and the global structure of proofs directly reflects
higher-level reasoning. The framework presented is based on ongoing work by
Reuben Rowe and the author, some of which can be found in [26,29,28,23]. We
conclude the paper by briefly discussing two major open research questions
in the field of non-well-founded theory: namely, the need for a user-friendly
implementation of the method into modern proof assistants, in order to make it
applicable and to facilitate advancements in automated proof search and program
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verification, and the task of determining the precise relationship between systems
for cyclic reasoning and standard systems for explicit reasoning.

2 The Principles of Induction and Coinduction

A duality between the induction principle and the coinduction principle is clearly
observed when formulating them within an algebraic, or categorical, framework.
This section reviews such a general algebraic formalization (Section 2.1), and
then presents transitive (co)closure logic, which will serve as our running example
throughout this paper as it provides simple, yet very intuitive, inductive and
coinductive notions (Section 2.2).

2.1 Algebraic Formalization of Induction and Coinduction

Both the induction principle and the coinduction principle are usually defined
algebraically via the concept of fixed points, where the definitions vary in different
domains such as order theory, set theory or category theory. We opt here for
a set-theoretical representation for the sake of simplicity, but more general
representations, e.g., in a categorical setting, are also well-known [71].

Let Ψ : ℘(D)→ ℘(D) be a monotone operator on sets for some fixed domain
D (where ℘(D) denotes the power set of D). Since (℘(D),⊆) is a complete lattice,
by the Knaster–Tarski theorem, both the least-fixed point and greatest-fixed
point of Ψ exist. The least-fixed point (µ) is given by the intersection of all its
prefixed points—that is, those sets A satisfying Ψ(A) ⊆ A—and, dually, the
greatest-fixed point (ν) is given by the union of all its postfixed points—that is,
those sets A satisfying A ⊆ Ψ(A). These definitions naturally yield corresponding
induction and coinduction principles.

Induction Principle: Ψ(A) ⊆ A =⇒ µ(Ψ) ⊆ A
Coinduction Principle: A ⊆ Ψ(A) =⇒ A ⊆ ν(Ψ)

The induction principle states that µ(Ψ) is contained in every Ψ -closed set, where
a set A is called Ψ -closed if, for all a ∈ A and b ∈ D, (a, b) ∈ Ψ(A) implies
b ∈ A (which means that µ(Ψ) =

⋂
{A | Ψ(A) ⊆ A}). The coinduction principle

dually states that ν(Ψ) contains every Ψ -consistent set, where a set A is called
Ψ -consistent if, for all a ∈ A, there is some b ∈ D such that both (a, b) ∈ Ψ(A)
and b ∈ A (which means that ν(Ψ) =

⋃
{A | A ⊆ Ψ(a)}).

The intuition behind an inductively defined set is that of a “bottom-up”
construction. That is, one starts with a set of initial elements and then applies
the constructor operators finitely many times. One concrete example of an
inductively defined set is that of finite lists, which can be constructed starting
from the empty list and one constructor operator that adds an element to the
head of the list. The finiteness restriction stems from the fact that induction
is the smallest subset that can be constructed using the operators. Using the
induction principle, one can show that all elements of an inductively defined set
satisfy a certain property, by showing that the property is preserved for each
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constructor operator. A coinductively defined set is also constructed by starting
with a set of initial elements and applying the constructor operators, possibly
infinitely many times. One example, which arises from the same initial element
and constructors as the inductive set of lists, is that of possibly infinite lists,
i.e. the set that also contains infinite streams. The fact that we can apply the
operators infinitely many times is due to coinduction being the largest subset
that can (potentially) be constructed using the operators. Using the coinduction
principle, one can show that an element is in a coinductively defined set.

2.2 Transitive (Co)closure Operators

Throughout the paper we will use two instances of fixed points that provide a
minimal framework which captures applicable forms of inductive and coinductive
reasoning in an intuitive manner, and is more amenable for automation than
the full theory of fixed points. This section introduces these fixed points and
discusses the logical framework obtained by adding them to first-order logic.

Definition 1 ((Post-)Composition Operator). Given a binary relation, X,
ΨX is an operator on binary relations that post-composes its input with X, that
is ΨX(R) = X ∪ (X ◦R) = {(a, c) | (a, c) ∈ X ∨ ∃b . (a, b) ∈ X ∧ (b, c) ∈ R}.

Because unions and compositions are monotone operators over a complete
lattice, so are composition operators, and therefore both µ(ΨX) and ν(ΨX) exist.
A pair of elements, (a, b), is in µ(ΨX) when b is in every X-closed set that can be
reached by some X-steps from a, which is equivalent to saying that there is a finite
(non-empty) chain of X steps from a to b. A pair of elements, (a, b), is in ν(ΨX)
when there exists a set A that contains a such that the set A\{b} is X-consistent,
which is equivalent to saying that either there is a finite (non-empty) chain of X
steps from a to b, or there is an infinite chain of X steps starting from a.

The µ(ΨX) operator is in fact the standard transitive closure operator. Extend-
ing first-order logic (FOL) with the addition of this transitive closure operator
results in the well-known transitive closure logic (a.k.a. ancestral logic), a generic,
minimal logic for expressing finitary1 inductive structures [48,73,5,24,25,23].
Transitive closure (TC) logic was recently extended with a dual operator, called
transitive co-closure, that corresponds to ν(ΨX) [27]. The definition below presents
the syntax and semantics of the extended logic, called Transitive (co)Closure
logic, or TcC logic.

Definition 2 (TcC Logic). For σ a first-order signature, let s, t and P range
over terms and predicate symbols over σ (respectively), and let M be a structure
for σ, and ν a valuation in M .

Syntax. The language LTcC (over σ) is given by the following grammar:

ϕ,ψ ::= s = t | P (t1, . . . , tn) | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ∀x . ϕ | ∃x . ϕ |
(TC x,y ϕ)(s, t) | (TC op

x,y ϕ)(s, t)

1 See [40] for a formal definition of “finitary” inductive definitions.
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where the variables x, y in the formulas (TC x,y ϕ)(s, t) and (TC op
x,y ϕ)(s, t)

are distinct and are bound in the subformula ϕ.

Semantics. The satisfaction relation M,ν |= ϕ extends the standard satisfaction
relation of classical first-order logic with the following clauses:

M,ν |= (TC x,y ϕ)(s, t)⇔

∃(~di)i≤n . d1 = ν(s) ∧ dn = ν(t) ∧ ∀i < n . M, ν[x := di, y := di+1] |= ϕ

M, ν |= (TC op
x,y ϕ)(s, t)⇔

∃(~di)i>0 . d1 = ν(s) ∧ ∀i > 0 . di = ν(t) ∨M,ν[x := di, y := di+1] |= ϕ

where ν[x1 := dn, . . . , xn := dn] denotes the valuation that maps xi to di and

behaves as ν otherwise; ϕ
{
t1
x1
, . . . , tnxn

}
denotes simultaneous substitution;

and (~di)i≤n and (~di)i>0 denote, respectively, non-empty finite and (countably)
infinite sequences of elements from the domain.

Intuitively, the formula (TC x,y ϕ)(s, t) asserts that there is a (possibly empty)
finite ϕ-path from s to t, while the formula (TC op

x,y ϕ)(s, t) asserts that either
there is a (possibly empty) finite ϕ-path from s to t, or an infinite ϕ-path starting
at s. For simplicity of presentation we take here the reflexive forms of the closure
operators, which yields the following correspondence.2

Proposition 1. Let [[ϕ]]M,ν
x,y := {(a, b) | M,ν[x := a, y := b] |= ϕ}.

(i) M,ν |= (TC x,y ϕ)(s, t) ⇔ ν(s) = ν(t) or (ν(s), ν(t)) ∈ µ(Ψ[[ϕ]]M,νx,y
).

(ii) M,ν |= (TC op
x,y ϕ)(s, t) ⇔ ν(s) = ν(t) or (ν(s), ν(t)) ∈ ν(Ψ[[ϕ]]M,νx,y

).

Note that, unlike the situation in standard fixed-point logics, the two closure
operators are not inter-definable. The TC operator is definable in arithmetics
(i.e. in Peano Arithmetics, PA), but the TC op operator is not.

Thus, TcC logic is subsumed by fixed-point logics, such as the first-order
µ-calculus [64], but the concept of the transitive (co)closure is intuitively simpler
than that of general fixed-point operators, and it does not require any syntactic
restrictions to ensure monotonicity. In fact, due to its complexity and generality,
the investigation of the full first-order µ-calculus tends to focus only on variants
and fragments, and is mainly concentrated on the logical and model-theoretic
aspects, lacking a comprehensive proof theory.3Another reason for focusing on
these (co)closure operators is that they allow for the embedment of many forms of
inductive and coinductive reasoning within one concise logical framework. Thus,
while other extensions of FOL with inductive definitions are a priori parametrized
by a set of inductive definitions [59,60,79,19], bespoke induction principles do

2 The definition of the post-composition operator can be reformulated to incorporate
the reflexive case, however, we opt to keep the more standard definition.

3 Proof theory has been developed for the propositional modal µ-calculus fragment [51],
and recently also for matching µ-logic [20,21,22] which generalizes the µ-calculus.
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not need to be added to TcC logic; instead, applicable (co)induction schemes are
available within a single, unified language. This conciseness allows the logic to
be formally captured using one fixed set of inference rules, and thus makes it
particularly amenable for automation. Moreover, in TcC logic, the same signature
is shared for both inductive and coinductive data, making certain aspects of the
relationship between the two principles more apparent.

Defining infinite structures via the coclosure operators in TcC logic leads to a
symmetric foundation for functional languages where inductive and coinductive
data types can be naturally mixed. For example, using the standard list con-
structors (the constant nil and the (infix) binary function symbol ‘::’) and their
axiomatization, the collections of finite lists, possibly infinite lists, and infinite
lists (i.e., streams) are straightforwardly definable as follows.

List(σ) := (TC x,y ∃a. x = a :: y)(σ, nil)

List∞(σ) := (TC op
x,y ∃a. x = a :: y)(σ, nil)

Stream(σ) := (TC op
x,y ∃a. x = a :: y ∧ y 6= nil)(σ, nil) ∧ σ 6= nil

TcC logic also naturally captures properties of, and functions on, streams [29].

3 Non-well-founded Deduction for Induction

This section presents the general method of non-well-founded proof theory (Sec-
tion 3.1), and then provides a concrete example of a non-well-founded proof
system for inductive reasoning in the setting of the transitive closure (Section 3.2),
where the implicit form of inductive reasoning is then compared against the
explicit one. Note that this section first presents the proof theory only for TC
logic, which is the inductive fragment of TcC logic, i.e., the one based only on
the transitive closure operator.

3.1 Non-well-founded Proof Theory

The method of non-well-founded proofs provides an alternative approach to
explicit inductive reasoning by exploiting the fact that there are no infinite
descending chains of elements of well-ordered sets. Clearly, not all non-well-
founded proof trees constitute a valid proof, i.e. a proof of the validity of the
conclusion in the root. A proof tree that simply has one loop over the conclusion
or one that repeatedly uses the substitution or permutation rules to obtain cycles
are examples of non-well-founded proof trees that one would not like to consider
as valid. Thus, a non-well-founded proof tree is allowed to be infinite, but to
be considered as a valid proof, it has to obey an additional requirement that
prevents such unsound deductions. Hence, non-well-founded proofs are subject to
the restriction that every infinite path in the proof admits some infinite descent.
Intuitively, the descent is witnessed by tracing syntactic elements, terms or
formulas, for which we can give a correspondence with elements of a well-founded
set. In this respect, non-well-founded proof theory enables a separation between
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local steps of deductive inference and global well-foundedness arguments, which
are encoded in traces of terms or formulas through possibly infinite derivations.

Below we present proof systems in the style of sequent calculus. Sequents are
expressions of the form Γ ⇒ ∆, for finite sets of formulas Γ and ∆. We write Γ, ϕ
as a shorthand for Γ ∪ {ϕ}, and fv(Γ ) for the set of free variables of the formulas
in Γ . A sequent Γ ⇒ ∆ is valid if and only if the formula

∧
ϕ∈Γ ϕ→

∨
ψ∈∆ ψ is.

Let S be a collection of inference rules. First, we define the notion of a
non-well-founded proof tree, a pre-proof, based on S.

Definition 3 (Pre-proofs). A pre-proof in S is a possibly infinite derivation
tree formed using the inference rules of S. A path in a pre-proof is a possibly
infinite sequence of sequents, s0, s1, . . . (, sn), such that s0 is the root sequent of
the proof, and si+1 is a premise of si in the derivation tree for each i < n.

As mentioned, not every pre-proof is a proof: only those in which there is some
notion of infinite descent in every infinite branch, which allows one to formalize
inductive arguments. To make this concrete, one picks some syntactic element,
which can be formulas or terms, to be tracked through a pre-proof. We call such
elements traced elements. The intuition behind picking the traced elements is that
eventually, when we are given a pre-proof, we could trace these elements through
the infinite branches, and map them into some well-founded set. This is what
underpins the soundness of the non-well-founded method, as explained below.
Given certain traced elements, we inductively define a notion of trace pairs which
corresponds to the appearances of such traced elements within applications of
the inference rules throughout the proof. That is, for traced elements, τ, τ ′, and a
rule with conclusion s and a premise s′ such that τ appears in s and τ ′ appears
in s′, (τ, τ ′) is said to be a trace pair for (s, s′) for certain rule applications,
and there has to be at least one case identified as a progressing trace pair. The
progression intuitively stands for the cases in which the elements of the trace pair
are mapped to strictly decreasing elements of the well-founded set. We provide a
concrete example of traced elements and a trace pair definition in the transitive
closure setting in Section 3.2.

Definition 4 (Traces). A trace is a (possibly infinite) sequence of traced el-
ements. We say that a trace τ1, τ2, . . . (, τn) follows a path s1, s2, . . . (, sm) in a
pre-proof P if, for some k ≥ 0, each consecutive pair of formulas (τi, τi+1) is a
trace pair for (si+k, si+k+1). If (τi, τi+1) is a progressing pair, then we say that
the trace progresses at i, and we say that the trace is infinitely progressing if it
progresses at infinitely many points.

Proofs, then, are pre-proofs which satisfy a global trace condition.

Definition 5 (Infinite Proofs). A proof is a pre-proof in which every infinite
path is followed by some infinitely progressing trace.

We denote by S∞ the non-well-founded proof system based on the rules in S.
The general soundness argument for such infinite systems follows from a

combination of standard local soundness of the inference rules in S together
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(TC ref )

Γ ⇒ ∆, (TC x,y ϕ)(s, s)

Γ ⇒ ∆,ϕ { s
x

, r
y} Γ ⇒ ∆, (TC x,y ϕ)(r, t)

(TCR)

Γ ⇒ ∆, (TC x,y ϕ)(s, t)

Γ, s = t⇒ ∆ Γ,ϕ { s
x

, z
y}, (TC x,y ϕ)(z, t) ⇒ ∆

(TC im
L )

Γ, (TC x,y ϕ)(s, t) ⇒ ∆

Γ,ψ(x), ϕ(x, y) ⇒ ∆,ψ { y
x}

(TC ex
L )

Γ, ψ { s
x}, (TC x,y ϕ)(s, t) ⇒ ∆,ψ

{
t
x

}
where in (TC im

L ), z 6∈ fv(Γ,∆, (TCx,y ϕ)(s, t)), and in (TC ex
L ), x 6∈ fv(Γ,∆) and y 6∈ fv(Γ,∆, ψ).

Fig. 1: Proof rules for the TC operator

with a global soundness argument via an infinite descent-style construction, due
to the presence of infinitely progressing traces for each infinite path in a proof.
One assumes for contradiction that the conclusion of the proof is invalid, which,
by the local soundness of the rules, entails the existence of an infinite sequence
of counter-models, going along an infinite branch. Then, one demonstrates a
mapping of these models into a well-founded set, (D,<), which decreases while
following the sequence of counter-models, and strictly decreases when going
over progression points. But then, by the global trace condition, there exists an
infinitely descending chain in D, which of course yields a contradiction.

While a full infinitary proof system is clearly not effective, effectiveness can
be obtained by restricting consideration to the cyclic proofs, i.e., those that are
finitely representable. These are the regular infinite proof trees, which contain
only finitely many distinct subtrees. Intuitively, the cycles in the proofs capture
the looping nature of inductive arguments and, thereby, the cyclic framework
provides the basis for an effective system for automated inductive reasoning. A
possible way of formalizing such proof graphs is as standard proof trees containing
open nodes, called buds, to each of which is assigned a syntactically equal internal
node of the proof, called a companion (see, e.g., [19, Sec.7] for a formal definition).

Definition 6 (Cyclic Proofs). The cyclic proof system Sω is the subsystem
of S∞ comprising of all and only the finite and regular infinite proofs (i.e., those
proofs that can be represented as finite, possibly cyclic, graphs).

3.2 Explicit vs. Implicit Induction in Transitive Closure Logic

Since we focus on the formal treatment of induction in this section, we here
present the proof systems for TC logic, i.e., the logic comprising only the TC
operator extension. Both proof systems presented are extensions of LK=, the
sequent calculus for classical first-order logic with equality [44]. 4

Figure 1 presents proof rules for the TC operator. Rules (TC ref ), (TCR)
assert the reflexivity and the transitivity of the TC operator, respectively. Rule

4 Here LK= includes a substitution rule, which was not a part of the original systems.
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(TC ex
L ) can be intuitively read as follows: if the extension of ψ is ϕ-closed, then

it is also closed under the reflexive transitive closure of ϕ. Rule (TC im
L ) is in

a sense a case-unfolding argument, stating that to prove something about the
reflexive transitive closure of ϕ, one must prove it for the base case (i.e., s = t)
and also prove it for one arbitrary decomposition step (i.e., where the ϕ-path is
decomposed to the first step and the remaining path).

The explicit (well-founded) proof system STC is based on rules (TC ref ), (TCR)
and (TC ex

L ). The implicit (non-well-founded) proof system S∞TC is based on rules
(TC ref ), (TCR) and (TC im

L ), and its cyclic subsystem is denoted by SωTC. In S∞TC,
the traced elements are TC formulas on the left-hand side of the sequents, and
the points of progression are highlighted in blue in Figure 1. The soundness of
the S∞TC system is then underpinned by mapping each model of an TC formula
of the form (TC x,y ϕ)(s, t) to the minimal length of the ϕ-path between s and t.

Rules (TC ex
L ) and (TC im

L ) both offer a unified treatment of inductive reason-
ing, in the sense that bespoke induction principles do not need to be added to
the systems. A big advantage of the implicit system is that it can ameliorate
the major challenge in automating inductive reasoning of finding the induction
invariant a priori. Indeed, a major difference between these two induction rules
is the presence of the induction invariant. In (TC ex

L ), unlike in (TC im
L ), there is

an explicit appearance of the induction invariant, namely ψ. Instead, in S∞TC, the
induction invariant, which is often stronger than the goal one is attempting to
prove, can (usually) be inferred via the cycles in the proof.

Since TC logic subsumes arithmetics, by Gödel’s result, the system STC, while
sound, is incomplete with respect to the standard semantics.5 Nonetheless, the
full non-well-founded proof system S∞TC is sound and (cut-free) complete for
TC logic [28,26]. Furthermore, the cyclic subsystem SωTC subsumes the explicit
system STC.

4 Adding Coinductive Reasoning

This section extends the non-well-founded proof theory of TC logic from Sec-
tion 3.2 to support the transitive coclosure operator, and thus the full TcC logic
(Section 4.1). We then provide an illustrative example of the use of the resulting
framework, demonstrating its potential for automated proof search (Section 4.2).

4.1 Implicit Coinduction in Transitive (Co)closure Logic

The implicit (non-well-founded) proof system for TcC logic, denoted S∞TcC, is an
extension of the system S∞TC, obtained by the addition of the proof rules for the
TC op operator presented in Figure 2. Again, rules (TC op

ref ), (TC op
R ) state the

reflexivity and transitivity of the TC op operator, respectively, and rule (TC op
L )

is a case-unfolding argument. However, unlike the case for the TC op operator in
which rule (TC im

L ) can be replaced by a rule that decomposes the path from the

5 STC is sound and complete with respect to a generalized form of Henkin semantics [23].
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(TC
op
ref

)

Γ ⇒ ∆, (TC op
x,y ϕ)(s, s)

Γ ⇒ ∆,ϕ
{

s
x

, r
y

}
Γ ⇒ ∆, (TC op

x,y ϕ)(r, t)
(TC

op
R )

Γ ⇒ ∆, (TC op
x,y ϕ)(s, t)

Γ, s = t⇒ ∆ Γ,ϕ
{

s
x

, z
y

}
, (TC op

x,y ϕ)(z, t) ⇒ ∆
(TC

op
L )

Γ, (TC op
x,y ϕ)(s, t) ⇒ ∆

where in (TC op
L ), z 6∈ fv(Γ,∆, (TC op

x,y ϕ)(s, t)).

Fig. 2: Proof rules for the TC op operator

end, in rule (TC op
L ) it is critical that the decomposition starts at the first step

(as there is no end point). Apart from the additional inference rules, S∞TcC also
extends the traced elements to include TC op formulas, which are traced on the
right-hand side of the sequents, and the points of progression are highlighted in
pink in Figure 2.

Interestingly, the two closure operators are captured proof-theoretically using
inference rules with the exact same structure. The difference proceeds from
the way the decomposition of the corresponding formulas is traced in a proof
derivation: for induction, TC formulas are traced on the left-hand sides of the
sequents; for coinduction, TC op formulas are traced on the right-hand sides of
sequents. Thus, traces of TC formulas show that certain infinite paths cannot
exist (induction is well-founded), while traces of TC op formulas show that other
infinite paths must exist (coinduction is productive). This formation of the rules
for the (co)closure operators is extremely useful with respect to automation, as
the rules are locally uniform, thus enabling the same treatment for induction
and coinduction, but are also globally dual, ensuring that the underlying system
handles them appropriately (at the limit). Also, just like the case for induction,
the coinduction invariant is not explicitly mentioned in the inference rules.

The full non-well-founded system S∞TcC is sound and (cut-free) complete with
respect to the semantics of TcC logic [27]. It has been shown to be powerful enough
to capture non-trivial examples of mixed inductive and coinductive reasoning
(such as the transitivity of the substream relation), and to provide a smooth
integration of induction and coinduction while also highlighting their similarities.
To exemplify the naturality of the system, Figure 3 demonstrates a proof that
the transitive closure is contained within the transitive co-closure. The proof has
a single cycle (and thus a single infinite path), but, following this path, there is
both a trace, consisting of the TC formulas highlighted in blue, and a co-trace,
consisting of the TC op formulas highlighted in pink (the progression points are
marked with boxes). Thus, the proof can be seen both as a proof by induction
and as a proof by coinduction.

4.2 Applications in Automated Proof Search

The cyclic reasoning method seems to have enormous potential for the automation
of (co)inductive reasoning, which has not been fully realized. Most notably, as
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(TC
op
ref

)

⇒ (TC
op
x,y ϕ)(u, u)

(Eq)

u = v ⇒ (TC
op
x,y ϕ)(u, v) .

.

.

.

.

.

.

.

(Ax)

ϕ
{
u
x ,

w
y

}
, (TCx,y ϕ)(w, v)⇒ ϕ

{
u
x ,

w
y

}
(TCx,y ϕ)(u, v)⇒ (TC

op
x,y ϕ)(u, v)

(Sub)

(TCx,y ϕ)(w, v)⇒ (TC
op
x,y ϕ)(w, v)

(Wk)

ϕ
{
u
x ,

w
y

}
, (TCx,y ϕ)(w, v)⇒ (TC op

x,y ϕ)(w, v)
(TC

op
R

)

ϕ
{
u
x ,

w
y

}
, (TCx,y ϕ)(w, v) ⇒ (TC

op
x,y ϕ)(u, v)

(TCim
L )

(TCx,y ϕ)(u, v)⇒ (TC
op
x,y ϕ)(u, v)

Fig. 3: Proof that the TC op operator subsumes the TC operator

mentioned, cyclic systems can facilitate the discovery of a (co)induction invariant,
which is a primary challenge for mechanized (co)inductive reasoning.6 Thus, in
implicit systems, the (co)inductive arguments and hypotheses may be encoded
in the cycles of a proof, in the sense that when developing the proof, one can
start with the goal and incrementally adjust the invariant as many times as
necessary. Roughly speaking, one can perform lazy unfolding of the (co)closure
operators to a point in which a cycle can be obtained, taking advantage of
non-local information retrieved in other branches of the proof.

The implications of these phenomena for proof search can be examined using
proof-theoretic machinery to analyze and manipulate the structures of cyclic
proofs. For example, when verifying properties of mutually defined relations,
the associated explicit (co)induction principles are often extremely complex. In
the cyclic framework, such complex explicit schemes generally correspond to
overlapping cycles. Exploring such connections between hard problems that arise
from explicit invariants and the corresponding structure of cyclic proofs, can
facilitate automated proof search. The cyclic framework offers yet another benefit
for verification in that it enables the separation of the two critical properties
of a program, namely liveness (termination) and safety (correctness). Thus,
while proving a safety property (validity of a formula), one can extract liveness
arguments via infinite descent.

4.2.1 Program Equivalence in the TcC Framework

The use of the (co)closure operators in the TcC framework seems to be particularly
well-suited for formal verification, as these operators can be used to simultaneously
express the operational semantics of programs and the structure of the (co)data
manipulated by them. Use of the same constructors for both features of the
program constitutes an improvement over current formal frameworks, which

6 Some verification approaches can discover inductive invariants automatically [43,45],
or direct their construction based on the property being verified [63,50], but they do
not currently support coinductive reasoning.
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rest := fix rest(f).λn. if n > 0 then (output n; rest f (n− 1)) else f 0

f := fix f(n). let v = (output n; input()) ∗ 2 in (if v 6= 0 then f else rest f) (v + n)

g := fix g(m). output (2 ∗ m); let v = input() in if v = 0 then rest g (2 ∗ m) else g (v + n)

RES :=

(TC 〈u1,u2〉,〈v1,v2〉 (u1 > 0 ∧ v1 = u1 − 1 ∧ u2 = u1 :: v2) ∨ (u1 = v1 = 0 ∧ u2 = v2))(〈n, s〉, 〈0, s′〉)

ψf := ∃i, w. x2 = i ::w∧
[(i ∗ 2 6= 0 ∧ y1 = i ∗ 2 + x1 ∧ w = x1 :: y2) ∨ (i = y1 = 0 ∧ RES(x1, w, x1 :: y2))]

ψg := ∃i, w. x2 = i ::w∧
[(i 6= 0 ∧ y1 = i+ x1 ∧ w = (2 ∗ x1) :: y2) ∨ (i = y1 = 0 ∧ RES(2 ∗ x1, w, (2 ∗ x1) :: y2))]

SPEC : (TC
op
〈x1,x2〉,〈y1,y2〉

ψf)(〈2 ∗m, s〉, 〈⊥,⊥〉)⇐⇒ (TC
op
〈x1,x2〉,〈y1,y2〉

ψg)(〈m, s〉, 〈⊥,⊥〉)

Fig. 4: The recursive programs and their formalization in TcC

usually employ qualitatively different formalisms to describe the operational
semantics of programs and the associated data.7 For instance, although many
formalisms employ separation logic to describe the data structures manipulated
by programs (e.g., the Cyclist prover [18]), they also encode the relationships
between the program’s memory and its operational behavior via bespoke symbolic-
execution inference rules [10,65].

To demonstrate the capabilities and benefits of the TcC framework for verifica-
tion and automated proof search, we present the following example, posed in [47,
Sec. 3]. The example consists of proving that the two recursive programs given
in Figure 4 (weakly) simulate one another. Both programs continually read the
next input, compute the double of the sum of all inputs seen so far, and output
the current sum. On input zero, both programs count down to zero and start
over. The goal is to formally verify that g(m) is equivalent to f(2m). However, as
noted in [47], a formal proof of this claim via the standard Tarskian coinduction
principle is extremely laborious. This is mainly because one must come up with
an appropriate “simulation relation” that contains all the intermediate execution
steps of f and g, appropriately matched, which must be fully defined before we
can even start the proof.

The (co)closure operators offer a formalization of the problem which is very
natural and amenable to automation, formalizing the programs by encoding all
(infinite) traces of f and g as streams of input/output events. Hence, the simulation
amounts to the fact that each such stream for f can be simulated by g, and vice
versa. The bottom part of Figure 4 shows the formalization of the specification
in TcC logic, where the encoding of each program is a natural simplification that
can easily (and automatically) be obtained from either structural operational
semantics or Floyd–Hoare-style axiomatic semantics. We use ⊥ as a designated
unreachable element (i.e., an element not related to any other element). The fact

7 Notable exceptions include [66,76,20,21,22], which take a similar approach but invoke
second-order elements.
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(⊥ inequalities)
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w = (2m) :: ??

.

.

.

.

? := z1/2?? := z2

Fig. 5: Structure of the proof of one direction of SPEC

that the (co)closure operators can be applied to complex formulas that include,
for example, quantifiers, disjunctions and nesting of the (co)closure operators,
enables a concise, natural presentation without resorting to complex case analysis.
This offers a significant a priori simplification of the formula we provide to the
proof system (and, in turn, to a prover), even before starting the proof-search
procedure.

The cyclic proof system, in turn, enables a natural treatment of the coinduc-
tive reasoning involved in the proof, in a way that is particularly amenable to
automation. Figure 5 outlines the structure of the proof of one direction of the
equivalence defined in SPEC. For conciseness, the subscripts 〈x1, x2〉, 〈y1, y2〉 are
omitted from all TC op formulas and we use (TC op ϕ)⊥(〈u, v〉) as a shorthand
for (TC op ϕ)(〈u, v〉, 〈⊥,⊥〉). The proof is compact and the local reasoning is
standard: namely, the unfolding of the TC op operator. The proof begins with
a single unfolding of the TC op formula on the left and then proceeds with its
unfolding on the right. The key observation is that the instantiation of the
unfolding on the right (i.e., the choice of the term r in Rule (TC op

R )) can be
automatically inferred from the terms of the left unfolding, by unification. Thus,
when applying Rule (TC op

R ), one does not have to guess the intermediate term
(in this case, 〈z1/2, z2〉); instead, the term can be automatically inferred from
the equalities in the subproof of the single-step implication, as illustrated by the
green question marks in Figure 5.

Finally, to formally establish the correctness of our simplified formalization,
one needs to prove that, for example, the abstract RES(n, s, s′) is indeed equivalent
to the concrete program restart on f and on g. This can be formalized and proved
in a straightforward manner, as the proof has a dual structure and contains a TC
cycle. This further demonstrates the compositionality of TcC framework, as such
an inductive subproof is completely independent of the general, outer coinductive
TC op cycle.
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5 Perspectives and Open Questions

As mentioned, the approach of non-well-founded proof theory holds great potential
for improving the state-of-the-art in formal support for automated inductive
and coinductive reasoning. But the investigation of cyclic proof systems is far
from complete, and much work is still required to provide a full picture. This
section concludes by describing two key research questions, one concerning
the applicability of the framework and the other concerning the fundamental
theoretical study of the framework.

5.1 Implementing Non-well-founded Machinery

Current theorem provers offer little or no support for implicit reasoning. Thus,
major verification efforts are missing its great potential for lighter, more legible
and more automated proofs. The main implementation of cyclic reasoning can be
found in the cyclic theorem prover Cyclist [18], which is a fully automated prover
for inductive reasoning based on the cyclic framework developed in [15,16,19].
Cyclist has been very successful in formal verification in the setting of separation
logic. Cyclic inductive reasoning has also been partially implemented into the
Coq proof assistant through the development of external libraries and func-
tional schemas [77]. Both implementations do not support coinductive reasoning,
however.

To guarantee soundness, and decide whether a cyclic pre-proof satisfies the
global trace condition, most cyclic proof systems feature a mechanism that
uses a construction involving an inclusion between Büchi automata (see, for
example, [15,74]). This mechanism can be (and has been) applied successfully
in automated frameworks, but it lacks the transparency and flexibility that one
needs in interactive theorem proving. For example, encoding proof validity into
Büchi automata makes it difficult to understand why a cyclic proof is invalid
in order to attempt to fix it. Therefore, to fully integrate cyclic reasoning into
modern interactive theorem provers in a useful manner, an intrinsic criterion for
soundness must be developed, which does not require the use of automata but
instead operates directly on the proof tree.

5.2 Relative Power of Explicit and Implicit Reasoning

In general, explicit schemes for induction and coinduction are subsumed by their
implicit counterparts. The converse, however, does not hold in general. In [19],
it was conjectured that the explicit and cyclic systems for FOL with inductive
definitions are equivalent. Later, they were indeed shown to be equivalent when
containing arithmetics [19], where the embedding of the cyclic system in the
explicit one relied on an encoding of the cycles in the proof. However, it was
also shown, via a concrete counter-example, that in the general case the cyclic
system is strictly stronger than the explicit one [9]. But a careful examination of
this counter-example reveals that it only refutes a weak form of the conjecture,
according to which the inductive definitions available in both systems are the
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same. That is, if the explicit system is extended with other inductive predicates,
the counter-example for the equivalence no longer holds. Therefore, the less strict
formulation of the question—namely, whether for any proof in the cyclic system
there is a proof in the explicit system for some set of inductive predicates—has
not yet been resolved. In particular, in the TcC setting, while the equivalence
under arithmetics also holds, the fact that there is no a priori restriction on the
(co)inductive predicates one is allowed to use makes the construction of a similar
counter-example in the general case much more difficult. In fact, the explicit and
cyclic systems may even coincide for TcC logic.

Even in cases where explicit (co)induction can capture implicit (co)induction
(or a fragment of it), there are still open questions regarding the manner in which
this capturing preserves certain patterns. A key question is whether the capturing
can be done while preserving important properties such as proof modularity.
Current discourse contains only partial answers to such questions [75,77,68] which
should be investigated thoroughly and systematically. The uniformity provided
by the closure operators in the TcC setting can facilitate a study of this subtle
relationship between implicit and explicit (co)inductive reasoning.

Acknowledgements. As mentioned in the introduction, the TcC framework is
based on a wonderful ongoing collaboration with Reuben Rowe. The author is also
extremely grateful to Andrei Popescu and Shachar Itzhaky for their contributions
to the framework.
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