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Powerful yet effective induction principles play an important role in computing, being a paramount

component of programming languages, automated reasoning and program verification systems. The Bar
Induction principle is a fundamental concept of intuitionism, which is equivalent to the standard principle of

transfinite induction. In this work we investigate the compatibility of several variants of Bar Induction with

Constructive Type Theory (CTT), a dependent type theory in the spirit of Martin-Löf’s extensional theory. We

first show that CTT is compatible with a Bar Induction principle for sequences of numbers. Then, we establish

the compatibility of CTT with a more general Bar Induction principle for sequences of name-free closed terms.

The formalization of the latter principle within the theory involved enriching CTT’s term syntax with a limit

constructor and showing that consistency is preserved. Furthermore, we provide novel insights regarding Bar

Induction, such as the non-truncated version of Bar Induction on monotone bars being intuitionistically false.

These enhancements are carried out formally using the Nuprl proof assistant which implements CTT, and the

formalization of CTT within the Coq proof assistant presented in previous works.

Additional Key Words and Phrases: Bar Induction, Computational Type Theory, Intuitionistic Logic, W types,

Semantics, Choice Sequences, Nuprl, Coq

ACM Reference Format:
Vincent Rahli, Mark Bickford, Liron Cohen, and Robert L. Constable. 2010. Bar Induction is Compatible with

Constructive Type Theory. ACM Trans. Web 9, 4, Article 39 (March 2010), 35 pages. https://doi.org/0000001.

0000001

1 INTRODUCTION
Constructive Type Theory (CTT) is a powerful dependent type theory in the spirit of Martin-Löf’s

extensional theory. Variants of CTT are implemented by widely used proof assistants such as

Agda [24; 3], Coq [18; 39], Idris [25; 56], Lean [74], and Nuprl [35; 7]. The capabilities of such proof

assistants have been exploited to advance the state of the art in many computer science application

such as compilers [69], microkernels [61], or operating systems [47]. CTT and its variants have their

roots in Brouwer’s intuitionistic mathematics [30; 28; 11], which goes beyond CTT by exceeding

Church-Turing computability. Moreover, intuitionistic mathematics comes with a powerful and

general induction principle called Bar Induction (BI) [60; 50; 67; 43; 13; 27; 99; 108; 12; 93; 92; 106;

105; 88]. The goal of this work is two-fold:
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• While all the aforementioned proof assistants come equipped with strong inductive principles,

ensuring their correctness is, in general, very complex. In search for a powerful, computational

inductive principle, in this work we formally show that CTT can be consistently enhanced

with variants of BI.

• BI is a salient principle of intuitionistic mathematics that goes beyond constructive math-

ematics, whose additional computational capabilities have yet to be studied in the context

of CTT. This work takes a step towards adding such capabilities to CTT, resulting in a new

kind of type theory, whose notion of computation extends Church-Turing computability.

Bar Induction was initially introduced by Brouwer as an induction principle to reason about

choice sequences [101]. They are never finished sequences of objects created over time by a creating
subject [43, Sec.6.3], which lie at the heart of intuitionistic logic. Choice sequences can be lawlike

in the sense that they are determined by an algorithm, or lawless in the sense that they are not

subject to any law (e.g., generated by throwing dice), or a combination of both. Brouwer developed

a notion of intuitionistic continuum by defining real numbers as choice sequences of nested rational

intervals, and proved that all real-valued functions on the unit interval are uniformly continuous [29,

Thm.3] using his continuity principle for numbers, which roughly speaking says that a decision on

a choice sequence can only be made according to an initial segment of the sequence. To prove this

uniform Continuity Principle, Brouwer also used a reasoning principle for choice sequences called

the Fan Theorem (FT), which he derived from the Bar Induction principle. Brouwer’s (decidable)

Fan Theorem says that every decidable bar on a finitary spread is uniform (this will be made more

precise below)—see Sec. 6.1, [99, Ch.7,Sec.7], and [43, Sec.3.2].

Bar induction is an induction principle on barred universal spreads. What does that mean? A

spread, as Dummett defines it [43, Sec.3.2] “is essentially a tree, with the restriction that every

path is infinite, and that we can effectively construct any subtree consisting of initial segments of

finitely many paths”. The universal spread is the type of choice sequences of numbers (denoted

B below). A fan is a finitely branching spread. A bar is a property of spreads that is true about at

least one initial segment of each path. Below is a formal definition of Bar Induction together with

some visualization in Fig 1.

As mentioned by Kleene [60, pp.50-51], BI corresponds to Brouwer’s footnote 7 in [29], which

roughly speaking says that if a spread is barred then there is a “backward” inductive proof of that.We

first state below a “general” unconstrained version of BI, i.e. where the bar is not constrained, which

is not true in constructive mathematics [60, Sec.7.14; 43, Sec.3.4; 92, Rem.3.3; 106, Sec.2]—Kleene

showed that it contradicts continuity [60, Sec.7.14,Lem.
∗
27.23]. However, BI is often accepted by

intuitionists when bars are restricted to decidable or monotone bars [60; 43; 108]. Also, as proved by

Kleene [60, Lem.9.8], functions on numbers, such as B’s members, are not and cannot be restricted
to general recursive functions for FT and BI to be true (see also [99, p.223; 43, pp.52–53; 50, Sec.4;

60, pp.47–48]). Until recently, CTT’s B type only contained general total recursive functions:

λ-expressions that produce numbers from numbers. This is not the case anymore because in this

work we enhance the B type with non-recursive objects (infinite choice sequences), as we explain

below.

We now formally state BI. We use the following notations (see Fig. 4 for a list of Nuprl’s primitive

types): B for the Baire space, i.e., the function space N → N, which we also write as NN; Bk for

NNk , where k is a natural number and Nk is the type of natural numbers strictly less than k ; Π
and Σ in lieu of the constructive logical quantifiers ∀ and ∃, respectively; P ∨ Q for the disjoint

union P+Q ; Ui for the type of propositions at level i . We often omit universe levels and write

either Type or P for Ui—as opposed to Coq for example, there is no distinction between types and

propositions in Nuprl. A term P is a predicate on finite sequences (of numbers) if it is a member of
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the type Πn:N.Bn → P. A predicate on finite sequences P is a subset of another predicate on finite

sequences Q if for all n ∈ N and s ∈ Bn , P (n, s ) implies Q (n, s ).1 A predicate P on finite sequences

is inductive if for all n ∈ N and s ∈ Bn , if Πm:N.P (n + 1, s ⊕nm) then P (n, s ), where s ⊕nm updates

the sequence s by setting the nth value to bem, i.e., s ⊕nm = λx .if x=n thenm else s (x ). A bar is
a predicate on finite sequences B, such that Πs:B.Σn:N.B (n, s )—we will see below that the Σ type

in this formula can sometimes be truncated.

The Bar Induction principle states that if P is an inductive predicate on finite sequences, and B
is a bar and a subset of P , then for any term t , P (0, t ), i.e., P is true about the empty sequence.

MON

IH

P (0, t )

B → P

Fig. 1. Bar Induction

We refer to the BI principle above as the uncon-

strained BI principle. A bar B is decidable if for all
n ∈ N and s ∈ Bn , B (n, s ) ∨ ¬B (n, s ). A bar B is

monotone if for all n,m ∈ N and s ∈ Bn if B (n, s )
then B (n + 1, s ⊕n m), Bar Induction on Decidable

bars (BID) also assumes that B is decidable, and Bar

Induction on Monotone bars (BIM) assumes that B
is monotone. Fig. 1 illustrates the BIM principle.

While, as noted, the unconstrained BI principle is

not valid in constructivemathematics, we here prove

that a ↓-squashed variant of it (i.e. one in which

some evidence is omitted—see Sec. 2.4) is valid w.r.t.

Nuprl’s PER semantics. This is done using CTT’s

formalization in Coq. In addition, we also discuss

possible ways of externalizing this proof (in the sense that the proof is done within CTT itself,

and not within its metatheory). Furthermore, using this ↓-squashed BI principle we derive both

a non-squashed BID principle and a ⇃-squashed BIM principle using bar recursion operators.
2

We also present a novel, more general BIM principle and show that both it and the standard BIM

principle are false in CTT in general, except when proving proof irrelevant propositions (i.e., to

prove ⇃-squashed propositions—see Sec. 2.4).

We provide a model of CTT extended with BI, and prove the validity of a BI inference rule for

sequences of numbers. As mentioned above, functions on numbers cannot be restricted to general

recursive functions for BI to be true. Consequently, to prove the validity of this rule we added a

notion of choice sequences to Nuprl’s term language in our model of CTT. These choice sequences

are here all Coq functions from numbers to numbers, even those that make use of axioms (that

are consistent with CIC—Coq’s logic), and are therefore not computable. Our choice sequences are

similar to the choice sequences in [14] and are introduced for a similar reason. They are only used

in the metatheory and only get exposed to users through a partial axiomatization as illustrated in

Sec. 4.1.2.
3
We generalize the validity proof to also support sequences of name-free closed terms.

Our names, sometimes called unguessable atoms [4; 20; 88], are similar to those in nominal logic [84].

Inductive types and principles are an essential ingredient in any programming language. There

are several approaches to building them using CTT. For instance, until recently, Nuprl was relying

on Mendler’s monotone inductive types [73] to build inductive types similar to those of Coq [83]—

Mendler’s constructions go beyond those of Coq because they allow one to build monotone inductive

1
In this context, for readability, we sometimes write P (a, b ) for the application (P a b ).

2
Kleene proved using continuity that BIM can be reduced to BID, and that BID follows from BIM without any extra

assumptions [60, Ch.1,Sec.7.6; 99, Ch.4,Prop.8.13; 43, Thm.3.7&3.8].

3
Users need only work with finite terms that do not contain choice sequences as illustrated in https://github.com/vrahli/

NuprlInCoq/blob/master/rules/sterm.v.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

https://github.com/vrahli/NuprlInCoq/blob/master/rules/sterm.v
https://github.com/vrahli/NuprlInCoq/blob/master/rules/sterm.v


39:4 Rahli/Bickford/Cohen/Constable

Name Formula Where Comments
BI↓ WF(B ) → BAR↓ (B ) → BASE(B, P ) → IND(P ) → ↓P (0, ‚) Coq uses classical logic

BID WF(B ) → BAR↓ (B ) → DEC(B ) → BASE(B, P ) → IND(P ) → P (0, ‚) Nuprl uses BI↓
BIM⇃ WF(B ) → BAR⇃ (B ) → MON(B ) → BASE(B, P ) → IND(P ) → ⇃P (0, ‚) Nuprl uses BI↓
¬uBIM ¬ΠB, P :(Πn:N.PBn ).BAR⇃ (B ) → MON(B ) → BASE(B, P ) → IND(P ) → P (0, ‚) Nuprl contradicts continuity

gBIM⇃ ΠP :(Πn:N.Bn → P).MONBAR(P ) → IND(P ) → ⇃P (0, ‚) Nuprl uses BI↓
¬WCP1,0 ¬ΠF :NB .Πf :B .Σn:N.Πд:B .f =Bn д → F (f ) =N F (д) Nuprl

WCP1,0⇃ ΠF :NB .Πf :B .⇃Σn:N. Πд:B .f =Bn д → F (f ) =N F (д) Coq uses named exceptions

WCP1,0↓ ΠF :NB .Πf :B .↓Σn:N.Πд:B .f =Bn д → F (f ) =N F (д) Coq uses diverging terms

¬WCP1,1 ¬ΠP :B → PB .(Πa:B .Σb :B .P (a, b )) → Σc :NB .CONT(c ) ∧ Πa:B .shift(c, a) Nuprl

WCP1,1⇃ ?¬ΠP :B → PB .(Πa:B .Σb :B .P (a, b )) → ⇃Σc :NB . CONT(c )⇃ ∧ Πa:B .shift(c, a) ?

WCP1,1↓ ?¬ΠP :B → PB .(Πa:B .Σb :B .P (a, b )) → ↓Σc :NB .CONT(c )↓ ∧ Πa:B .shift(c, a) ?

AC0,0 ΠP :N→ PN .(Πn:N.Σm:N.P (n,m)) → Σf :B .Πn:B .P (n, f (n)) Nuprl

AC0,0⇃ ΠP :N→ PN .(Πn:N.⇃Σm:N. P (n,m)) → ⇃Σf :B . Πn:B .P (n, f (n)) Nuprl

AC0,0↓ ΠP :N→ PN .(Πn:N.↓Σm:N.P (n,m)) → ↓Σf :B .Πn:B .P (n, f (n)) Coq uses classical logic

AC1,0 ΠP :B → PN .(Πf :B .Σn:N.P (f , n)) → ΣF :NB .Πf :B .P (f , F (f )) Nuprl

AC1,0⇃ ΠP :B → PN .(Πf :B .⇃Σn:N. P (f , n)) → ⇃ΣF :NB . Πf :B .P (f , F (f )) Nuprl

AC1,0↓ ?¬ΠP :B → PN .(Πf :B .↓Σn:N.P (f , n)) → ↓ΣF :NB .Πf :B .P (f , F (f )) ?

AC2,0 ΠP :NB → PN .(Πf :NB .Σn:T .P (f , n)) → ΣF :T (NB ) .Πf :NB .P (f , F (f )) Nuprl

¬AC2,0⇃ ¬(ΠP :N
B → PT .(Πf :NB .⇃Σn:T . P (f , n)) → ⇃ΣF :T (NB ) . Πf :NB .P (f , F (f ))) Nuprl contradicts continuity

¬AC2,0↓ ¬(ΠP :N
B → PT .(Πf :NB .⇃Σn:T . P (f , n)) → ↓ΣF :T (NB ) .Πf :NB .P (f , F (f ))) Nuprl contradicts continuity

¬LEM ¬ΠP :P.P ∨ ¬P Nuprl

¬LEM⇃ ¬ΠP :P.⇃(P ∨ ¬P ) Nuprl

LEM↓ ΠP :P.↓(P ∨ ¬P ) Coq uses classical logic

MP ΠP :PN .(Πn:N.P (n) ∨ ¬P (n)) → (¬Πn:N.¬P (n)) → Σn:N.P (n) Nuprl uses LEM↓
¬KS ¬ΠA:P.Σa:B .((Σx :N.a (x ) =N 1) ⇐⇒ A) Nuprl uses MP
¬KS⇃ ¬ΠA:P.⇃Σa:B .((Σx :N.a (x ) =N 1) ⇐⇒ A) Nuprl uses MP
KS↓ ΠA:P.↓Σa:B .((Σx :N.a (x ) =N 1) ⇐⇒ A) Coq uses classical logic

Fig. 2. Valid intuitionistic axioms

types from monotonic functions on types. Nonetheless, these sorts of constructions usually rely

on the assumption that the computation system is terminating. This was key, for example, in

Mendler’s proof of the validity of the inference rules for (co-)inductive types. The current version

of Nuprl has an extremely rich collection of types which includes, among other things, types of

partial functions [97; 36; 40]. Therefore, its computation system is no longer terminating. To recover

inductive types, instead of adapting Mendler’s proof to deal with a non-terminating computation

system, we exploit BI to derive “standard” induction principles (Howard and Kreisel proved that BI

is equivalent to transfinite induction [50]—see Sec. 7). Thus, we use a variant of BI to construct

indexed families of W types [72; 79] from indexed families of co-W types (see Sec. 5).

As previously mentioned, other than Bar Induction, there are several principles that go beyond

constructive mathematics. Those include the classical Law of Excluded Middle (LEM) and Axiom of

Choice (AC), the (Russian) constructive Markov’s Principle (MP), and the intuitionistic Continuity

Principle (WCP) and Kripke’s Schema (KS). Fig. 2 summarizes the status of variants of those

principles w.r.t. CTT. Those axioms have either been validated using our Coq model of CTT, or

have been proved to be true directly in Nuprl, or we use “?” to indicate those that have not yet been

proved or disproved. WCP, AC, and LEM are discussed in [89]. KS and MP are discussed in Sec. 6.2.

Both CONT and shift are defined in Sec. 6.2. We write CONT(c )↓ for the version of CONT(c ) where Σ
is ↓Σ; we write CONT(c )⇃ for the version of CONT(c ) where Σ is ⇃Σ; and we simply write CONT(c ) for
the version of CONT(c ) where Σ is Σ. The empty sequence ‚ is defined in Sec. 3.1. Also, let (these
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Validated in Coq

Unconstrained Squashed BI

(Sec. 3.1 & 4)

Continuity

(Sec. 3.5 & [88])

Validated in Nuprl

BID

(Sec. 3.4)

BIM⇃
(Sec. 3.6)

gBIM⇃
(Sec. 3.7)

¬uBIM
(Sec. 3.8)

Fig. 3. Outline of main results

predicates correspond to the hypotheses presented below in Sec.3.2)

WF(B) = Πn:N.Πs:Bn .B (n, s ) ∈ Type
BAR↓(B) = Πs:B.↓Σn:N.B (n, s )
BAR⇃ (B) = Πs:B.⇃Σn:N.B (n, s )
DEC(B) = Πn:N.Πs:Bn .B (n, s ) ∨ ¬B (n, s )
MON(B) = Πn:N.Πs:Bn .Πm:N. (B (n, s ) → B (n + 1, s ⊕n m))
MONBAR(P ) = Πs:B.⇃Σn:N. Πm:{n . . . }.P (m, s )
BASE(B, P ) = Πn:N.Πs:Bn .B (n, s ) → P (n, s )
IND(P ) = Πn:N.Πs:Bn . ((Πm:N.P (n + 1, s ⊕n m)) → P (n, s ))

Note that the bar properties BAR↓(B) and BAR⇃ (B) guarantee that the bar predicate B is well-formed

on infinite sequences. However, in addition, we typically require that the bar property in bar

induction principles is well-formed on finite sequences of type Bn for any n ∈ N using WF(B).

Roadmap. First, Sec. 2 presents part of Nuprl’s syntax and semantics that are used in the rest

of this paper. Sec. 3 discusses the variants of BI explored. Sec. 3.1 introduces the ↓-squashed

unconstrained BI inference rule that we have proved to be valid w.r.t. Nuprl’s PER semantics using

CTT’s formalization in Coq. Sec. 3.3–3.6 introduce the versions of BID and BIM that we have

derived using bar recursion operators. In Sec. 3.7 we present a new and more general version of

BIM, and in Sec. 3.8 we prove that both this general principle and the standard BIM principle are

false in CTT when not ⇃-squashed. Sec. 4 establishes the consistency of the extended framework.

Sec. 4.1 provides a model of CTT extended with BI, and proves the validity of a BI inference rule for

sequences of numbers. Then, Sec. 4.2 generalizes Sec. 4.1 to sequences of name-free closed terms.

Sec. 4.3 suggests a possible externalization of our metatheoretic proof of BI’s validity. In Sec. 5 we

demonstrate how BI can be used to construct W types. Sec. 6 investigates the connections between

BI and other key intuitionistic principles, namely the Fan Theorem and Kripke’s Schema. Finally,

Sec. 7 discusses related work and Sec. 8 concludes.
4

4
Some of the results presented here were presented in our LICS 2017 paper [91]. We here present additional details regarding

Nuprl in Sec. 2, continuity in Sec. 3.5 and Bar Induction throughout the paper. Most notably Sec. 4.3 suggests a possible

externalization of our metatheoretic proof of BI’s validity; Sec. 5 demonstrate how BI can be used to derive induction

principles for W types; and Sec. 6 discusses related principles, namely the Fan Theorem and Kripke’s Schema.
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Fig. 3 summarizes the main results presented in this paper. All of them have either been formal-

ized in Coq: https://github.com/vrahli/NuprlInCoq; or in Nuprl: http://www.nuprl.org/LibrarySnapshots/Published/

Version2/Standard/continuity/index.html. Nuprl lemmas can be accessed by clicking the green hyperlinks or

alternatively the reader can search in the continuity library for the lemmas named as the hyperlinks.

The text will make it precise whether the results have been proved using Coq or using Nuprl.

2 BACKGROUND
The Nuprl interactive theorem prover [35; 7] implements a type theory called Constructive Type
Theory (CTT), which is a dependent type theory, in the spirit of Martin-Löf’s extensional theory [71],

based on an untyped functional programming language. Its types include equality types, a hierarchy

of universes, W types, quotient types [34], set types, union and (dependent) intersection types [62],

image types [78], PER types [9], approximation and computational equivalence types [90], and

partial types [97; 40]. CTT “mostly” differs from other similar constructive type theories such as

the ones implemented by Agda [24; 3], Coq [18; 39], or Idris [25; 56], in the sense that CTT is

an extensional theory (i.e., propositional and definitional equality are identified [48]) with types

of partial functions [97; 36; 40]. For example, the fixpoint fix(λx .x ) computes to itself in two

computation steps and therefore diverges. It is nonetheless a member of types such as the partial

type Z—the type of integers and diverging terms. In Nuprl, type checking is undecidable but in

practice this is mitigated by type inference/checking heuristics implemented as tactics. Following

Allen’s semantics [5; 6], CTT types are interpreted as Partial Equivalence Relations (PERs) on closed

terms, and we have formalized this semantics in Coq [10; 80].

We next present some key aspects of Nuprl that will be used in the rest of this paper. Sec. 2.1

discusses the syntax and operational semantics of a large subset of Nuprl’s computation system,

and Sec. 2.2 discusses Nuprl’s type system and its PER semantics.

2.1 Computation System
Fig. 4 presents a subset of Nuprl’s syntax and small-step operational semantics [7; 80]. We only

show the part that is either mentioned or used in this paper. Nuprl’s programming language is an

untyped (à la Curry), lazy λ-calculus with pairs, injections, a fixpoint operator, etc. For efficiency,

integers are primitive and Nuprl provides operations on integers as well as comparison operators.

A term is either a variable, a value (or canonical term), or a non-canonical term. A non-canonical

term t has one or two principal arguments—marked using boxes in Fig. 4—which are terms that have

to be evaluated to canonical forms before t can be reduced further. For example the application f (a)
diverges if f diverges—we often write f (a) for the application f a. The canonical form tests [90]
ifint(t ,a,b) and iflam(t ,a,b) are used and explained in Sec. 4.1.2.

Fig. 4 also shows part of Nuprl’s small-step operational semantics. We omit the rules that reduce

principal arguments such as: if t1 7→ t2 then t1 u 7→ t2 u. Also, the operational semantics of ν was

introduced in [88] and is discussed below in Sec. 4.2.1.

We now define abstractions that will be used below:

⊥ = fix(λx .x )
tt = inl(⋆)
ff = inr(⋆)

π1 (a) = let x ,y = a in x
π2 (a) = let x ,y = a in y

a ≤z b = if a<b then tt else if a=b then tt else ff
isl(a) = case a of inl( ) ⇒ tt | inr( ) ⇒ ff
if a then b else c = case a of inl( ) ⇒ b | inr( ) ⇒ c

Also, we write λx1, . . . ,xn .t for λx1. . . . λxn .t .
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v ∈ Value ::= vt (type) | inl(t) (left injection) | ⋆ (axiom)

| ⟨t1, t2⟩ (pair) | λx .t (lambda) | inr(t) (right injection)

| i (integer) | a (name value)

vt ∈ Type ::= Z (integer type) | Πx :t1.t2 (product) | t1 = t2 ∈ t (equality)

| Base (base) | Σx :t1.t2 (sum) | t1+t2 (disjoint union)

| Name (name type) | ∪x :t1.t2 (union) | t1 ⪯ t2 (simulation)

| Ui (universe) | ∩x :t1.t2 (intersection) | t1 ≃ t2 (bisimulation)

| t1//t2 (quotient) | {x : t1 | t2} (set)

t ∈ Term ::= x (variable) | let x := t1 in t2 (call-by-value)

| v (value) | let x, y = t1 in t2 (spread)

| t1 t2 (application) | if t1 < t2 then t3 else t4 (less than)

| νx . t (fresh) | fix( t ) (fixpoint)

| iflam( t1 , t2, t3) (lambda test) | ifint( t1 , t2, t3) (integer test)

| if t1 = t2 then t3 else t4 (integer equality)

| case t1 of inl(x) ⇒ t2 | inr(y) ⇒ t3 (decide)

(λx .F ) a 7→ F[x\a]
fix(v) 7→ v fix(v)
let x := v in t 7→ t[x\v]
let x, y = ⟨t1, t2⟩ in F 7→ F[x\t1; y\t2]

if i1=i2 then t1 else t2 7→ t1, if i1 = i2
if i1=i2 then t1 else t2 7→ t2, if i1 , i2
if i1<i2 then t1 else t2 7→ t1, if i1 < i2
if i1<i2 then t1 else t2 7→ t2, if i1 ≮ i2

ifint(i, t1, t2) 7→ t1
ifint(v, t1, t2) 7→ t2, if v is not an integer

iflam(λx .t , t1, t2) 7→ t1
iflam(v, t1, t2) 7→ t2, if v is not a λ-term
case inl(t) of inl(x) ⇒ F | inr(y) ⇒ G 7→ F[x\t]
case inr(t) of inl(x) ⇒ F | inr(y) ⇒ G 7→ G[y\t]

Fig. 4. Syntax (top) and operational semantics (bottom) of a subset of Nuprl

2.2 Type System
Following Allen’s PER semantics, Nuprl’s types are interpreted as partial equivalence relations

(PERs) on closed terms [5; 6; 40]. Allen’s PER semantics can be seen as an inductive-recursive [44]

definition of: (1) an inductive relation T1≡T2 that expresses type equality; and (2) a recursive

function a≡b∈T that expresses equality in a type.
5
For example,T1≡T2 is true wheneverT1 computes

toΠx1:A1.B1;T2 computes toΠx2:A2.B2;A1≡A2; and for all closed terms t1 and t2 such that t1≡t2∈A1,

B1[x1\t1]≡B2[x2\t2]. The definitions of a≡b∈T and T1≡T2 include similar rules for all the other type

constructors of CTT. The top part of Fig. 4 lists some of Nuprl’s types (we only list here the ones

that either mentioned or used in this paper—see close’s definition in https://github.com/vrahli/NuprlInCoq/

blob/master/per/per.v for a complete list). We say that a term t inhabits or realizes a type T if t is equal
to itself in the PER interpretation of T , i.e., t≡t∈T . It follows from the PER interpretation of types

that the theoretical proposition a = b ∈ T is true iff a≡b∈T holds in the metatheory [10; 80].

An equality type of the form a = b ∈ T , which expresses that a and b are equal members

of the type T , are only inhabited by (expressions computing to) the constant ⋆, i.e., they do not

have computational content, as opposed to theories such as CIC or HoTT [104]. For example, the

proposition Πn,m:N.n +m =m + n ∈ N, can simply be inhabited by λn,m.⋆. It does not need to

be inhabited by a fixpoint, which would be the case in CIC for example.

5
Following Allen’s method, our Coq formalization uses a purely inductive definition instead of an inductive-recursive

definition. Methods to translate a mutually inductive-recursive definition to a single inductive definition have been formally

studied, for example by Capretta [31].
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In the rest of this paper, we often write a =T b for the type a = b ∈ T , and a ∈ T for the type

a = a ∈ T . Moreover, we write P ∧ Q for the non-dependent sum Σn:P .Q , where Q does not

depend on n.
Let True be 0 =Z 0 and False be 0 =Z 1. Note that the only member of True is ⋆, which is the

only inhabitant of true equality types, as discussed above; and False is an uninhabited empty

type. We sometimes write b for (if b then True else False), i.e., we use an implicit coercion from

Booleans to propositions.

Union and intersection types where introduced as part of CTT in [62]. Among other things, b is

a member of ∪x :A.B, if there exists a a ∈ A such that b ∈ B[x\a]; and b is a member of ∩x :A.B, if
for all a ∈ A, then b ∈ B[x\a].
Name is the type of names [4], which we used in [88; 89] to validate a continuity inference rule.

Our proof uses named exceptions to probe terms to compute the modulus of continuity of a function

F ∈ B → N at a point f ∈ B. Names come with two operations [88; 89]: a fresh operator ν to

generate fresh names, and a test for equality (not shown here).

As it turns out CTT is not only closed under computation but more generally under Howe’s

computational equivalence ∼, which he proved to be a congruence [51]. In any context C , when
t ∼ t ′ we can rewrite t into t ′ without concern for typing. This relation is especially useful to

prove equalities between programs (bisimulations) without concern for typing as illustrated in [90].

For example, using the least upper bound theorem [40, Thm.5.9], we can prove that all diverging

expressions such as fix(λx .x ) and fix(λx .x (x )) are computationally equivalent; or that all streams

of zeros such as fix(λx .⟨0,x⟩) and fix(λx .⟨0, ⟨0,x⟩⟩) are computationally equivalent. CTT provides

the following types to reason about Howe’s computational equivalent relation within Nuprl: Base
is the type of all closed terms of the computation system with ∼ as its equality; The type t1 ≃ t2 is
the theoretical counterpart of Howe’s metatheoretical relation t1 ∼ t2, and similarly for ⪯ and ≼.

As mentioned above, we have formalized CTT in Coq [10; 80], including: (1) an implementation of

Nuprl’s computation system; (2) an implementation of Howe’s computational equivalence relation,

and a proof that it is a congruence; (3) a definition of Allen’s PER semantics of CTT; (4) definitions

of Nuprl’s derivation rules, and proofs that these rules are valid w.r.t. Allen’s semantics; (5) and a

proof of Nuprl’s consistency [10; 80; 89, Sec.2.4]. We are using CTT’s formalization in Coq to prove

the validity of all the inference rules of Nuprl, and have already verified a large number of them.

See https://github.com/vrahli/NuprlInCoq/blob/master/RULES for a list of Nuprl’s inference rules along with

pointers to the proofs of their validity.

2.3 Diverging Terms
As mentioned in the introduction, Nuprl can assign types to diverging terms [97; 36; 40]. For

example, the fixpoint fix(λx .x ) is a member of, among others, the partial type Z, which is the type

of integers and diverging terms. The type Z can be seen as the integer type of ML-like programming

languages such as OCaml. Partial types are not the only ones that can be assigned to diverging

terms. Nuprl’s current function/pi and intersection types also allow one to assign types to diverging

elements. For example, the type Top of all terms such that all terms are equal in that type, can be

defined as False→ False (or as ∩False.False using intersection types). By definition of function

types all terms inhabit Top, even diverging terms such as fix(λx .x )—this was not the case in [35],

where only λ-terms were allowed to inhabit function types.

2.4 Squashing
In Nuprl, there are various ways of squashing or truncating a type. The one we use the most throws

away the evidence that a type is inhabited and squashes it down to a single inhabitant using set
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types: ↓T = {True | T } (as defined in [35, p.60]). Because a member of {x : T | U } is a member t
of T (such that U [x\t] holds)—and not a pair of a t in T and a u in U [x\t]—the only member of

↓T is then the constant ⋆, which is True’s single inhabitant. The constant ⋆ inhabits ↓T if T is

true/inhabited, but we do not keep the proof that it is true. See [89, Sec.2.6] for more information

on squashing. Using the HoTT terminology, we also sometimes truncate types at the propositional
level [104, Sec.3.7]. In Nuprl, that corresponds to squashing a type down to a single equivalence

class, i.e. all inhabitants are equal, using quotient types [34]: ⇃T = T //True. Because the members

of a quotient type T //E are the members of T , the members of ⇃T are then the members of T . Also,
⇃T is a proof-irrelevant type, i.e., its members are all equal to each other because if x ,y ∈ T then

(x =⇃T y ⇐⇒ True). Note that ⇃T → ↓T is true because it is inhabited by λx .⋆, but we cannot
prove the converse because to prove ⇃T we have to exhibit an inhabitant of T , which ↓T does not

give us because only ⋆ inhabits ↓T .

2.5 Sequents and Rules
Sequents are of the form h1, . . . ,hn ⊢ T ⌊ext t⌋. The term t is a member of the type T , which in

this context is called the extract or evidence of T . Extracts are programs that are computed by the

system once a proof is complete. We will sometimes omit proof extracts when they are irrelevant

to the discussion. An hypothesis h is of the form x : A, where the variable x is referred to as the

name of the hypothesis and A its type. Such a sequent states, among other things, that T is a type

and t is a member of T . A rule is a pair of a conclusion sequent S and a list of premise sequents,

S1, · · · , Sn , which we write as:

S1 · · · Sn
S

Several equivalent definitions for the validity of sequents appear in the Nuprl literature [35; 40;

62; 10; 89]. Since our results are invariant to the specific semantics, we do not repeat them here.

The sequent semantics standardly induces the notion of validity of a rule, i.e., the validity of the

premises entails the validity of the conclusion.

3 VARIANTS OF BAR INDUCTION
This section presents an unconstrained squashed BI principle, which we prove to be valid w.r.t.

the PER semantics in Sec. 4. It also explains how versions of BID and BIM are derived from this

squashed BI principle using bar recursion operators, and proves the negation of a non-⇃-squashed
version of BIM.

3.1 Squashed Unconstrained BI Rule
As mentioned above, the unconstrained non-squashed BI principle is not consistent with construc-

tive mathematics. However, it is consistent when proving ↓-squashed propositions as we prove

in Sec. 4. (We do not imply here that Brouwer would have approved such a rule.) Using CTT’s

formalization in Coq, we prove in this paper the validity w.r.t. Nuprl’s PER semantics of inference

rules of the following form, which we call [BarInduction]:
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Definition 1 ([BarInduction] rule)

(wfd) H ,n : N, s : TNn ⊢ B (n, s ) ∈ Type
(bar) H , s : TN ⊢ ↓Σn:N.B (n, s )
(base) H ,n : N, s : TNn ,b : B (n, s ) ⊢ P (n, s )
(ind) H ,n : N, s : TNn , i : (Πm:T .P (n + 1, s ⊕n m)) ⊢ P (n, s )

H ⊢ ↓P (0,‚)

where ‚ is an empty sequence, defined as λx .let := x in ⊥.

In Sec. 4.1 we take T to be N, and in Sec. 4.2 the type of name-free closed terms.

The conclusion of this rule is ↓-squashed and therefore does not have any computational content,

or rather its computational content is trivially the constant ⋆ (we often omit the trivial extract ⋆
from sequents). This means that we can use whatever means we want in our Coq metatheoretical

proof of its validity w.r.t. Nuprl’s PER semantics in Sec. 4, even classical ones, because this proof

will not be exposed in any way in the theory. Using this ↓-squashed principle, we show below how

to derive in Nuprl BI principles that do have computational content, namely versions of BID and

BIM. The conclusion of the bar hypothesis is ↓-squashed because some applications of this rule,

such as BID, only use the bar for termination, in which case the bar hypothesis does not contribute
to the extract, i.e., to the computational content of the induction principle.

We next discuss the‚ operator, which is used in the conclusion of [BarInduction] for technical

reasons. Intuitively, in (P 0‚),‚ could be replaced by any sequence because a sequence of length

n is also a sequence of length 0. However, this is only true if P is a well-formed predicate on

finite sequences, i.e., of type Πn:N.TNn → Type. Here we want to avoid requiring one to have to

prove that P is well-formed because we sometimes want to use this rule to prove that P is indeed

well-formed. (However, we require the bar B to be well-formed as stated by the subgoal called

wfd.) For example, we derive in Sec. 3 principles for non-↓-squashed propositions by proving that

some bar recursion operator br inhabits some proposition Q , i.e. br ∈ Q , using our ↓-squashed

BI principle. The proposition br ∈ Q is a ↓-squashed proposition, i.e. br ∈ Q ⇐⇒ ↓(br ∈ Q ),
because Nuprl’s equality types can only be inhabited by the constant ⋆. To prove that br ∈ Q is a

true/inhabited type, we have to prove that it is well-formed, i.e., that br ∈ Q is indeed a type, which

we might not be able to prove because we might again need to use Bar Induction for that.

P being a well-formed predicate on finite sequences would allow us, in proving the validity of

[BarInduction], to sometimes replace a sequence s1 of type T
Nn

by another sequence s2 of type
TNn in an expression of the form (P n s1), given that s1 = s2 ∈ T

Nn
. This is what ‚ allows us to do.

We can then prove that this sequence is computationally equivalent to the sequence norm(c, 0) for
any term c , i.e. ‚ ∼ norm(c, 0) (see Sec. 2.2), where norm is defined as follows:

norm(s,n) = λx .if x<0 then ⊥ else if x<n then s (x ) else ⊥

This normalization operator returns s (x ) for x ∈ {0, . . . ,n − 1}, and otherwise returns ⊥. Therefore,

when sequences are normalized using norm, if s1 = s2 ∈ T
Nn

, the two sequences norm(s1,n) and
norm(s2,n) are then computationally equivalent, i.e. norm(s1,n) ∼ norm(s2,n) (see Sec. 2.2), which
allows us to substitute norm(s1,n) for norm(s2,n) in (P n norm(s1,n)) without having to prove, e.g.,

that P is a well-formed predicate on finite sequences.

Unfortunately, we cannot simply define ‚ as λx .⊥ because of exceptions, which we have added

to Nuprl in [88]. If ‚ was defined λx .⊥, we would not be able to prove ‚ ∼ norm(c, 0), because
Nuprl’s computation system is lazy: λx .⊥ returns ⊥ when applied to an exception while norm(c, 0)
returns the exception.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.



Bar Induction is Compatible with Constructive Type Theory 39:11

3.2 BI Hypotheses
Let us now introduce a few variable names that will be used below to define bar recursion operators,

and which correspond to the hypotheses of BID and BIM as discussed in Sec. 1. We provide a list of

such terms along with their types:

base : Πn:N.Πs:TNn .B (n, s ) → P (n, s )
bar↓ : Πs:TN.↓Σn:N.B (n, s )
bar⇃ : Πs:TN.⇃Σn:N. B (n, s )
ind : Πn:N.Πs:TNn .(Πm:T .P (n + 1, s ⊕n m)) → P (n, s )
dec : Πn:N.Πs:TNn .B (n, s ) ∨ ¬B (n, s )
mon : Πn:N.Πs:TNn .Πt :T .B (n, s ) → B (n + 1, s ⊕n t )
mon∗ : Πn:N.Πm:Nn .Πs:TNn .B (m, s ) → B (n, s )

Note that the Σ type in bar⇃’s type is ⇃-squashed and not↓-squashed as in bar↓ and in [BarInduction]

because in Sec. 3.6 we need the bar hypothesis to have some computational content to build a

realizer for BIM. We can trivially prove that bar⇃ implies bar↓.
The mon∗ hypothesis is sometimes more convenient to use than the equivalent, more standard,

mon hypothesis. It says that if B is true about the initial segment of lengthm of some sequence s of
length at least n, then it is also true about its initial segment of length n > m.

3.3 Spector’s Bar Recursion Operator
Spector first introduced a parametrized bar recursion operator, called SBR here, in order to provide

a consistency proof of classical analysis relative to system T extended with this bar recursion

operator [98]. Spector mentioned some relation between SBR and BID, and Howard showed that

his W operator [49, p.111], which can be reduced to SBR, realizes BIM (see Sec. 3.6). SBR can be

defined as the following parametrized recursive operator (a minor difference: Spector’s operator

uses <z instead of ≤z)—see Nuprl definition spector-bar-rec:

Definition 2 (Spector’s bar recursion operator – SBR)

SBR(Y ,G,H ,n, s ) = if Y n s ≤z n then G n s else H n s (λt .SBR(Y ,G,H ,n + 1, s ⊕n t ))

Nuprl being untyped, we do not have to prove that SBR is in any type, and we have not done so.

However, we show that two of its instances inhabit BI principles in Sec. 3.4 and 3.6.

Spector used a restricted form of SBR to interpret the double-negation shift, which he used in his

consistency proof [98, Sec.10]. Oliva and Powell [82] later proved that this restricted form of SBR is

in fact as general as SBR. Informally, the way bar recursion works is that it goes up sequences by

extending finite sequences using the ⊕ operator, until Y tells us we have reached the bar, i.e. the

finite sequence given as argument is barred, at which point we apply the base operator G. Once
we have reached the bar for all the direct extensions of a finite sequence we apply the induction

operator H . As explained for example in [98, Sec.6.4,p.9; 102, Sec.1.9.26,p.83], the continuity of Y
implies that the recursion terminates because it implies that for long enough sequences Y returns a

number smaller than the length of the sequence it is applied to—see Sec. 3.5. Also, note that this

implies that checking whether we have reached the bar has to be decidable. As mentioned in [98,

p.9,Footnote 6], and as further explained in Sec. 3.6, this can be ensured by the fact that we can

compute the modulus of continuity of the bar.

3.4 Bar Induction on Decidable Bars
Using an instance of SBR we now prove a BID principle, which is both more general than the one

presented in Sec. 3.1 in the sense that it is for non-squashed propositions, and less general because
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the bar has to be decidable. We prove this principle directly in Nuprl (see Nuprl lemma decidable-bar-

rec wf) by proving that it is realized by the following decidable bar recursion operator, parametrized

by a n ∈ N and a s ∈ TNn—see Nuprl definition decidable-bar-rec:

Definition 3 (Decidable bar recursion operator – DBR)

DBR(dec, base, ind,n, s ) = case dec n s of
inl(r ) ⇒ base n s r
| inr( ) ⇒ ind n s (λt .DBR(dec, base, ind,n + 1, s ⊕n t ))

More precisely, using the [BarInduction] inference rule presented above in Def. 1, we have

proved the following BID principle.

Definition 4 (BID)

BID = ΠB, P :(Πn:N.Bn → P).
(Πs:B.↓Σn:N.B (n, s ))
→ (Πn:N.Πs:Bn .(Πm:N.P (n + 1, s ⊕n m)) → P (n, s ))
→ (Πn:N.Πs:Bn .B (n, s ) ∨ ¬B (n, s ))
→ (Πn:N.Πs:Bn .B (n, s ) → P (n, s ))
→ P (0,‚)

Theorem 1 (Bar Induction on Decidable bars – BID)

BID is true in CTT assuming [BarInduction] (i.e., the hypotheses bar↓, dec, base, and ind
defined in Sec. 3.2 imply that DBR(dec, base, ind, 0,‚) inhabits the proposition P (0,‚)).

Proof outline. As mentioned in Sec. 3.3, the way this decidable bar recursion operator works

(and essentially the way our proof in Nuprl goes—see decidable-bar-rec wf) is that starting from the

empty sequence, we test whether we have reached the bar using dec, which inhabits the proposition
that says that the bar B is decidable. Given a finite sequence provided by a number n and a sequence

s , if (dec n s ) returns inl(r ), i.e. we have reached the bar, then r is a proof that B (n, s ) is true. In
that case, we use our base hypothesis base. Otherwise, (dec n s ) returns inr(r ) which means that

we are not at the bar yet, and in that case we recursively call DBR on all possible extensions of the

sequence and use our induction hypothesis ind. □

As mentioned above, DBR is an instance of SBR—see Nuprl lemma decidable-bar-rec-equal-spector:

Lemma 3.1 (DBR as SBR)

DBR(dec, base, ind,n, s ) = SBR( λn, s .if dec n s then 0 else n + 1
, λn, s .case dec n s of inl(r ) ⇒ base n s r

| inr( ) ⇒ ⊥
, ind,n, s )

Note that the term ⊥ could be any term because the base operator is only applied to n and s when
(dec n s ) is an inl.

Remark 1. In Spector’s bar recursion operator SBR, the base case (G n s ) does not use the usual
base hypothesis of BI that the bar implies the predicate we are trying to prove. More precisely G only
takes a finite sequence as argument, and Y , which checks whether we have reached the bar, does not
build anything forG to use. It is enough to know that Y returns a small enough number. We have not
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done so, but this suggests that the bar proposition B (n, s ) in BI’s base hypothesis could be squashed as
follows:

Πn:N.Πs:TNn .↓B (n, s ) → P (n, s )

It turns out that for both BID and BIM we can always rebuild a proof of B (n, s ) in order to use the base
hypothesis.

3.5 Continuity Principle
As mentioned above, continuity is used to ensure the termination of bar recursors. We use here

variants of what is sometimes called the Strong Continuity Principle for numbers [93], which we

have proved to be valid w.r.t. Nuprl’s PER semantics (see [88; 89] as well as the Coq file https:

//github.com/vrahli/NuprlInCoq/blob/master/continuity/continuity_roadmap.v). More precisely, in Sec. 3.6 we

use a variant of Brouwer’s Strong Continuity Principle to define (a variant of) Howard’s W bar

recursion operator.

3.5.1 Strong Continuity Principle

We first define the following variant of Brouwer’s Strong Continuity Principle, which is derivable

from the one in [88]—see lemma strong-continuity-rel-unique:

Definition 5 (Strong Continuity Principle – SCP)

SCP = ΠP :(B → N→ P).
(Π f :B.⇃Σn:N. P ( f ,n))
→ ⇃ΣM :(Πn:N.Bn → (Nn+True)).

Π f :B.Σn:N.Σk :Nn .
P ( f ,k )
∧ M (n, f ) = inl(k ) ∈ Nn+True
∧ Πm:N.isl(M (m, f )) →m =N n

This Strong Continuity Principle essentially says that there is a uniform way, called M in the

above formula (such a function is often called a neighborhood function [99, p.212]), to decide

whether n is the modulus of continuity of P at f , and if so returns a number n such that P ( f ,n) [60,
pp.70–71].

This version of SCP differs from the one in [88] as follows: (1) here we present its relational version

instead of its functional version, i.e., we assume the existence of a predicate that relates numbers

and infinite sequences using a ⇃-squashed Σ type, while [88] assumes the existence of a function;

and (2) hereM is of type (Πn:N.Bn → (Nn+True)) as opposed to (Πn:N.Bn → (N+True)) in [88],

i.e., we are guaranteed that the modulus of continuity n of P at f will be larger than the value k
thatM returns (i.e., such thatM (n, f ) = inl(k )) such that P ( f ,k ) is true—or taking P as a function

as in [88], that P ( f ) < n. In Sec. 3.6 we use the modulus of continuity of BI’s bar hypothesis to

define the monotone bar recursion operator HBR so that we know that we only need to check initial

segments of infinite sequences to decide whether we have reached the bar. Therefore, (2) is useful

because we then know that if we have reached the modulus of continuity of the bar then we are

past the bar. As it turns out, Sec.3.5.2 presents an even more convenient version of the Strong

Continuity Principle, which we have used to define HBR.
As mentioned by Bridges and Richman [27, p.119], SCP is equivalent to a “principle of continuous

choice”, which they divide into a continuous part, namely what is often called the Weak Continuity

Principle (WCP), and a choice part, namely the axiom of choice often referred to as AC 1,0, which is
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true in Nuprl (see Nuprl lemma axiom-choice-1X-quot):

WCP = ΠF :NB .Π f :B.⇃Σn:N. Πд:B. f =Bn д → F ( f ) =N F (д)

AC1,0 = Π f :B.⇃Σn:N. P ( f ,n) → ⇃ΣF :NB . Π f :B.P ( f , F ( f ))

where P is a predicate of type B → N→ P.
As first shown by Kreisel in [66, p.154], continuity is not an extensional property in the sense

that it does not map equal arguments to equal values. Therefore, the existence ofM in SCP has to
be truncated. Troelstra later showed in [100, Thm.IIA], the inconsistency of N-HA

ω
(a “neutral”

version of HA
ω
that “permits extensional as well as intensional interpretations of equality at higher

types” [103]) extended with (1) Brouwer’s continuity principle, (2) a function extensionality axiom,

and (3) a version of the axiom of choice AC 2,0. We have proved this inconsistency in Nuprl when

the existential quantifier is interpreted as Σ: unsquashed-continuity-false-troelstra; and we have proved

that both the ⇃-squashed version of AC 2,0 and its ↓-squashed version:

AC2,0⇃ = Π f :NB .⇃Σn:T . P ( f ,n) → ⇃ΣF :T (NB ) . Π f :NB .P ( f , F ( f ))

AC2,0↓ = Π f :NB .⇃Σn:T . P ( f ,n) → ↓ΣF :T (NB ) .Π f :NB .P ( f , F ( f ))

where T is a non-empty type (such as N) and P is a predicate of type NB → T → P, are false in
Nuprl because they contradict continuity: see Nuprl lemmas notAC20 and notAC20-ssq. Escardó and

Xu [45] proved in Agda, without using function extensionality but allowing reductions under λs,
that the non-truncated version of WCP is false in a Martin-Löf-like type theory such as Nuprl.

3.5.2 Barred Strong Continuity Principle

Instead of SCP, we will use the following barred variant, called BSCP, which is derivable from

SCP–see Nuprl lemma strong-continuity-rel-unique-pair:

Definition 6 (Barred Strong Continuity Principle – BSCP)

BSCP = ΠP :(B → N→ P).
(Π f :B.⇃Σn:N. P ( f ,n))
→ ⇃ΣM :(Πn:N.Πs:Bn .(barred(P ,n, s )+True)).

Π f :B.Σn:N.Σp:barred(P ,n, f ).
M (n, f ) = inl(p) ∈ barred(P ,n, f )+True
∧ Πm:N.isl(M (m, f )) →m =N n

where barred(P ,n, s ) = Σk :Nn .P (s↑0n ,k ) is the type of pairs of a k in Nn and a p in P (s↑0n ,k ),
i.e., in the case where P is a predicate on finite sequences (as is the case for our bar predicate

B on which we will use BSCP below), P is true about the finite sequence s truncated at k ; and
where s↑mn = λx .if x<n then s (x ) elsem extends a finite sequence s of length n to an infinite

sequence by returning the default valuem starting from n.

BSCP makes it more convenient to define the HBR monotone bar recursion operator below in

Def. 7 than when using the standard definition of the Strong Continuity Principle as in Def. 5,

where barred(P ,n, s ) is simply Nn . As it turns out, in Sec. 3.6 we use BSCP instead of SCP because

the information provided by M in SCP is not convenient to use BI’s base hypothesis. As in DBR,
we also need a proof that we have reached the bar, i.e., a proof of B (n, s ) for some finite sequence

given by n and s . This information is provided by the condition onM in SCP. In order to simplify

the definition of HBR, we used the BSCP variant of SCP instead, whereM returns all the information

we need to define HBR.
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3.6 ⇃-Squashed Bar Induction on Monotone Bars
A few years after Spector [98] introduced his bar recursion operator, Howard [49] showed that

some instance of it, which he called W, realizes BIM, and of which we present a variant here called

HBR. Let the parameter T from Sec. 3.1 be N here, i.e., we only consider sequences of numbers.

Our setting is less general than Howard’s because the Continuity Principle presented in Sec. 3.5 is

only for sequences of numbers. Howard does not explicitly mention continuity. However, Spector

mentions continuity in [98, p.9,Footnote 6], where the modulus of continuity of the bar ensures

that each infinite sequence has an initial segment that is long enough so that we can check where

the sequence is barred. More precisely, (BSCP (λs,n.B (n, s )) bar⇃) gives us anM that, given a finite

sequence, tells us whether the sequence is long enough to know whether we have reached the bar

and also where we have reached the bar. Because BSCP is ⇃-squashed, assuming that the proposition

we are proving by monotone Bar Induction is ⇃-squashed too, (BSCP (λs,n.B (n, s )) bar⇃), provides
the followingM :

M ∈ Πn:N.Πs:Bn .(barred(B,n, s )+True) (1)

such that:

F ∈ Π f :B.Σn:N.Σp:barred(B,n, f ).
M (n, f ) = inl(p) ∈ barred(B,n, f )+True
∧ Πm:N.isl(M (m, f )) →m =N n

(2)

We define our monotone bar recursion operator HBR as follows—see Nuprl definition howard-bar-rec:

Definition 7 (Monotone bar recursion operator – HBR)

HBR(M,mon∗, base, ind,n, s ) = caseM (n, s ) of
inl(⟨k,p⟩) ⇒ base n s (mon∗ n k s p)
| inr( ) ⇒ ind n s (λt .HBR(M,mon∗, base, ind,n + 1, s ⊕n t ))

We have proved the following BIM result in Nuprl using the above bar recursion operator —see

Nuprl lemma howard-bar-rec wf.

Definition 8 (BIM⇃)

BIM⇃ = ΠB, P :(Πn:N.Bn → P).
(Πs:B.⇃Σn:N. B (n, s ))
→ (Πn:N.Πs:Bn .(Πm:N.P (n + 1, s ⊕n m)) → P (n, s ))
→ (Πn:N.Πm:Nn .Πs:TNn .B (m, s ) → B (n, s ))
→ (Πn:N.Πs:Bn .B (n, s ) → P (n, s ))
→ ⇃P (0,‚)

Theorem 2 (⇃-squashed Bar Induction on Monotone bars – BIM⇃)

BIM⇃is true in CTT assuming [BarInduction] (i.e., the hypotheses bar⇃, mon
∗
, base, and ind

defined in Sec. 3.2 imply that ⇃P (0,‚) is inhabited by HBR(M, mon∗, base, ind, 0,‚)).

Note that the proposition we are proving here using Bar Induction is ⇃-squashed. This is due
to the fact that we are using BSCP which is ⇃-squashed. Therefore, we can only prove that HBR
inhabits a ⇃-squashed BIM principle. Does that mean that, using BIM, one can only prove ⇃-squashed
propositions? We partially answer this question below in Sec. 3.8.

Proof outline. We want to prove that ⇃P (0,‚) is true. The first step is to compute the modulus

of continuity of bar⇃ to get a neighborhood functionM as shown above in Equation 1. Once we

have unsquashed the existence of this neighborhood function, we can also unsquash our conclusion,
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i.e., we are now proving P (0,‚), which we prove by showing that it is inhabited by HBR(0,‚),
where we write HBR(n, s ) for HBR(M, mon∗, base, ind,n, s ). We are now proving:

HBR(0,‚) ∈ P (0,‚)

We now use the [BarInduction] inference rule presented above in Sec. 3.1. When instantiating

this rule, we have to choose a bar predicate B, which does not necessarily have to be the same

as the one in BIM’s statement. Here we instantiate [BarInduction] using B = λn, s .isl(M (n, s )),
which is a well-formed predicate on finite sequences, and it remains to prove [BarInduction]’s bar

hypothesis:

Πs:B.↓Σn:N.isl(M (n, s )) (3)

[BarInduction]’s base hypothesis:

Πn:N.Πs:Bn .Πb:isl(M (n, s )).HBR(n, s ) ∈ P (n, s ) (4)

and [BarInduction]’s induction hypothesis:

Πn:N.Πs:Bn .Πi:(Πm:T .HBR(n + 1, s ⊕n m) ∈ P (n + 1, s ⊕n m)).HBR(n, s ) ∈ P (n, s ) (5)

We prove 3 using 2: we apply F to s and get a n ∈ N, a p ∈ barred(B,n, s ), and a proof that

M (n, s ) is a left injection, and we conclude by instantiating the conclusion of 3 using n. We now

prove 4. Because M (n, s ) is a left injection, say inl(⟨k,p⟩), such that ⟨k,p⟩ ∈ barred(B,n, s ),
we get that HBR(n, s ) computes to (base n s (mon∗ n k s p)), and we now have to prove that

(base n s (mon∗ n k s p)) ∈ P (n, s ), which is trivial by typing of base and mon∗. Finally, we prove 5.
By definition of HBR, if M (n, s ) is a left injection, we conclude using the same proof as for 4. If

M (n, s ) is a right injection, we have to prove that (ind n s (λt .HBR(n + 1, s ⊕n t ))) ∈ P (n, s ), which
is trivial by typing of ind. □

As mentioned above, HBR is an instance of SBR—see Nuprl lemma howard-bar-rec-equal-spector:

Lemma 3.2 (HBR as SBR)

HBR(M,mon∗, base, ind,n, s ) = SBR( λn, s .ifM (n, s ) then 0 else n + 1
, λn, s . caseM (n, s ) of

inl(⟨k,p⟩) ⇒ base n s (mon∗ n k s p)
| inr( ) ⇒ ⊥

, ind,n, s )

As in DBR’s definition, here the term ⊥ could be any term because this base operator is only applied

to n and s whenM (n, s ) is a left injection.
As mentioned above, continuity is used here to decide whether we have reached the bar or not.

Thanks to continuity we can reduce Monotone Bar Induction to Decidable Bar Induction as proved

for example by Kleene [60, p.78], and we can prove that HBR is also an instance of DBR—see Nuprl
lemma howard-bar-rec-equal-decidable:

Lemma 3.3 (HBR as DBR)

HBR(M,mon∗, base, ind,n, s ) = DBR(M, λn, s, r .let k,p = r in base n s (mon∗ n k s p), ind,n, s )
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3.7 Generalizing BIM
Before proving that the non-⇃-squashed version of BIM is false in Sec. 3.8, we present here a

slightly more general BIM principle than the standard one, which is also only for ⇃-squashed
propositions. This principle, which we call gBIM⇃, is inspired by the way Howard’s W operator

works, and especially by the fact that monotonicity is only used in HBR in the base case—see Nuprl

lemma gen-bar-rec.

Definition 9 (Generalized BIM – gBIM⇃)

gBIM⇃ = ΠP :(Πn:N.Bn → P).
(Πs:B.⇃Σn:N. Πm:{n . . . }.P (m, s ))
→ (Πn:N.Πs:NBn .(Πm:N.P (n + 1, s ⊕n m)) → P (n, s ))
→ ⇃P (0,‚)

where {n . . . } is the type {k : N | n ≤z k }.

Theorem 3
gBIM⇃ is true in CTT assuming [BarInduction].

Proof outline. We prove this using again the unconstrained ↓-squashed BI principle presented

in Def. 1, by showing that assuming that bar has type Πs:B.⇃Σn:N. Πm:{n . . . }.P (m, s ) and ind has

type Πn:N.Πs:Bn .(Πm:N.P (n + 1, s ⊕n m)) → P (n, s ) then the following instance of Spector’s bar

recursion operator has type ⇃P (0,‚):

SBR( λn, s .ifM (n, s ) then 0 else n + 1
, λn, s .caseM (n, s ) of inl(⟨k, F ⟩) ⇒ F (n)

| inr( ) ⇒ ⊥
, ind,n, s )

whereM is the neighborhood function of our bar hypothesis, i.e.:

M ∈ Πn:N.Πs:Bn .(barred(Q,k, s )+True)

where Q = λn, s .Πm:{n . . . }.P (m, s ), and such that:

F ∈ Π f :B.Σn:N.Σp:barred(Q,n, f ).
M (n, f ) = inl(p) ∈ barred(Q,n, f )+True
∧ Πm:N.isl(M (m, f )) →m =N n

The rest of the proof is similar to the one presented in Sec. 3.6. □

Let us mention two differences with a more “standard” version of BIM. (1) BIM is usually stated

using two predicates on finite sequences: a predicate B that represents the bar; and a predicate P ,
which we are proving by induction. Here we do not have the predicate B that represents the bar

because P itself represents the bar. (2) Also, here P has to be true at the bar and above the bar
6
,

whereas in the “standard” BIM principle the bar predicate B has to be true at the bar and monotone

below, at, and above the bar. It is straightforward to prove that gBIM⇃ implies BIM⇃(see Def. 8)—see
Nuprl lemma gen-bar-ind-implies-monotone:

Lemma 3.4 (gBIM⇃ implies BIM⇃)
gBIM⇃ implies BIM⇃in CTT.

6
The predicate P needs only be true between the bar and its modulus of continuity. Defining such a version of BIM is left

for future work.
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3.8 Negation of Non-⇃-Squashed BIM
We now prove that the ⇃ operator in the above versions of BIM (see for example Def. 8) is necessary,

i.e., that the following non-⇃-squashed version of BIM, which we call uBIM, is false—see Nuprl
lemma unsquashed-monotone-bar-induction3-false (we have also proved this result in Coq: https://github.com/

vrahli/NuprlInCoq/blob/master/continuity/unsquashed_continuity.v):

Definition 10 (uBIM)

uBIM = ΠB, P :(Πn:N.Bn → P).
(Πs:B.⇃Σn:N. B (n, s ))
→ (Πn:N.Πs:Bn .(Πm:N.P (n + 1, s ⊕n m)) → P (n, s ))
→ (Πn,m:N.Πs:Bn .B (n, s ) → B (n + 1, s ⊕n m))
→ (Πn:N.Πs:Bn .B (n, s ) → P (n, s ))
→ P (0,‚)

As discussed below, we still require that the bar be ⇃-squashed.

Lemma 3.5
uBIM implies a non-squashed version of WCP in CTT.

Proof outline. Suppose F ∈ NB and f ∈ B. We have to show: Σn:N.Πд:B. f =Bn д →
F ( f ) =N F (д). To prove this, we instantiate uBIM with:

B = λn, s .Πд:B.(s ⊞n f ) =Bn д → F (s ⊞n f ) =N F (д)
P = λn, s .Σm:{n . . . }.Πд:B.(s ⊞n f ) =Bm д → F (s ⊞n f ) =N F (д)

where s ⊞n f = λx .if x<n then s (x ) else f (x ). The proposition P (0,‚) is WCP, and we can then

easily prove the hypotheses of uBIM:

Bar. The bar hypothesis follows from the ⇃-squashed WCP principle, which is true in Nuprl. WCP
being ⇃-squashed, we also require uBIM’s bar hypothesis to be ⇃-squashed.

Base. The base hypothesis is trivial: it suffices to instantiate P (n, s ) with n.

Induction. To prove the induction hypothesis we instantiate Πm:N.P (n + 1, s ⊕n m) with f (n).
We get to assume P (n + 1, s ⊕n f (n)), i.e., that there exists am ≥ n + 1 such that for all д such that

((s ⊕n f (n)) ⊞n+1 f ) =Bm д then F ((s ⊕n f (n)) ⊞n+1 f ) =N F (д), and have to prove P (n, s ). We

instantiate our conclusion usingm and conclude because ((s ⊕n f (n)) ⊞n+1 f ) =B (s ⊞n f ).

Monotonicity. To prove the monotonicity hypothesis, we have to prove that B (n, s ) implies

B (n + 1, s ⊕n m), i.e., assuming B (n, s ) and ((s ⊕n m) ⊞n+1 f ) =Bn+1 д, we have to prove that

F ((s ⊕nm) ⊞n+1 f ) =N F (д). From ((s ⊕nm) ⊞n+1 f ) =Bn+1 д, we deduce that (s ⊞n f ) =Bn д, and
therefore from B (n, s ), we deduce that F (s ⊞n f ) =N F (д). Finally, to prove F ((s ⊕n m) ⊞n+1 f ) =N
F (д) it is now enough to prove F (s ⊞n f ) =N F ((s ⊕n m) ⊞n+1 f ), which we get by instantiating

B (n, s ) with (s ⊕n m) ⊞n+1 f .
For the full formal proof see Nuprl lemma unsquashed-BIM-implies-unsquashed-weak-continuity. □

Lemma 3.6 (¬uBIM)
uBIM and the non-squashed version of gBIM⇃ are both false in CTT.

Proof outline. Recall that the non-squashed Continuity Principle, as mentioned in Sec. 3.5, is

false in Nuprl, i.e.:

¬ΠF :NB .Π f :B.Σn:N.Πд:B. f =Bn д → F ( f ) =N F (д)
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is true in Nuprl. This, together with Lemma 3.5 and the fact that the non-squashed gBIM⇃ implies

uBIM yields the negative results. □

One question remains open: can we prove the validity of a non-squashed version of gBIM⇃ or of
the “standard” BIM principle, where both the bar hypothesis and the conclusion are not squashed?

This is left for future work.

4 VALIDATING BI INFERENCE RULES
Sec. 3 presented an unconstrained ↓-squashed BI principle, from which we have derived BID and

BIM principles. In this section we establish the validity of instances of this BI principle w.r.t. Nuprl’s

PER semantics. Sec. 4.1 proves that our [BarInduction] inference rule is valid w.r.t. Nuprl’s PER

semantics when T = N (see https://github.com/vrahli/NuprlInCoq/blob/master/bar_induction/bar_induction3.v);

while Sec. 4.2 proves its validity for sequences of name-free closed terms (see https://github.com/vrahli/

NuprlInCoq/blob/master/bar_induction/bar_induction_cterm4.v).

In essence, Brouwer’s argument regarding the validity of BI turned a “canonical proof” that a

spread is barred by B into a “canonical proof” that P is true about the empty sequence [43, Sec.3.4; 99,

Sec.8.18; 106, Sec.1]. Brouwer came up with the notion of a canonical proof by analyzing how one

can prove that a spread is barred. A canonical proof is an infinitely branching proof tree such that

each of its branches is finite, and which is built-up from three kinds of inference steps: monotone
(also called upward [99], backward [105], and ζ -inferences [29; 43]) and inductive (also called

downward [99], forward [105], and 𭟋-inferences [29; 43]) steps corresponding to the monotone

and inductive predicates introduced above, as well as immediate steps [99] (also called opening

statements [105] or η-inferences [43]) to derive that individual sequences are barred. Unsurprisingly,
these proof trees correspond to the trees built by bar recursion operators such as Howard’s W

operator [49], which realizes BIM (see Sec. 3.6). As explained for example in [43, Sec.3.4], while

Brouwer might have believed that the monotone ζ -steps were not necessary in canonical proofs,

this was then refuted by Kleene [60, Sec.7.14,Lem.
∗
27.23]. In [99, p.233] it was shown that monotone

ζ -steps can only be eliminated when the bar is monotone or decidable. As explained below in more

detail, monotone steps are not necessary when proving squashed propositions, which do not have

any computational content.

4.1 BI for Sequences of Natural Numbers
The theorem below establishes the consistency of Nuprl with the squashed-BI principle.

Theorem 4 (Validity of [BarInduction])
[BarInduction] is true in CTT’s impredicative Coq metatheory, i.e. in Prop.

Proof outline. We have proved this following Dummett’s standard classical proof [43, p.55],

which uses the law of excluded middle and the axiom of choice: see Coq file https://github.com/vrahli/

NuprlInCoq/blob/master/bar_induction/bar_induction3.v. His proof goes as follows
7
: first we assume the

negation of the conclusion using the law of excluded middle, i.e., the Coq axiom classic (available

at https://coq.inria.fr/library/Coq.Logic.Classical_Prop.html). We now get to assume ¬↓P (0,‚) and therefore

¬P (0,‚) too. Then, we contrapose our induction hypothesis (ind), and using the axiom of choice

FunctionalChoice on (available at https://coq.inria.fr/library/Coq.Logic.ChoiceFacts.html) we obtain a function

F that, for all n ∈ N, s ∈ Bn , and proof of ¬P (n, s ), returns a natural numberm such that ¬P (n +
1, s ⊕nm). Because ¬P (0,‚), F gives us a sequence α ∈ B such that for all n ∈ N, ¬P (n,α ). We now

7
For readability, we omit some technicalities here regarding the well-formedness of terms, which are discussed in Sec. 3.1,

in particular that finite sequences have to be normalized.
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instantiate our bar hypothesis (bar) with α to get a number k such that B (k,α ). Finally, using our

base hypothesis (base), we get a proof of P (k,α ), which contradicts that for all n ∈ N, ¬P (n,α ). □

4.1.1 Adding Coq Sequences to Nuprl

How did we construct the sequence α? F gives us a Coq function from numbers to numbers, but

our proof needs a Nuprl term in the Nuprl type B. To remedy that we added all Coq functions

from numbers to numbers to Nuprl’s computation system, even those that make use of axioms

such as classic and FunctionalChoice on, and which are therefore not computable. This coincides with

the fact that functions on numbers should not be restricted to general recursive functions for BI

to be true [60, Lem.9.8]. We call choice sequences these Coq functions from numbers to numbers

occurring in Nuprl terms.

Our choice sequences are similar to the infinite sequences in [14] denoted λλx .Mx , where M1,

M2, . . . , is an infinite sequence of terms, which are used in a similar fashion as above to prove that

some bar recursion operator realizes the negative translation of the axiom of choice. Similarly,

as mentioned in [86], using our choice sequences, we have proved the validity of versions of the

axiom of choice. In [14] the authors write: “The infinite terms are not for computational purposes,

they only play a role in the termination proof”. The same is true for us. The only place where we

use choice sequences is in the metatheoretical Coq proof of [BarInduction]’s validity, which is

not exposed in the theory because the conclusion of this rule is ↓-squashed and its computational

content is the constant ⋆. Therefore, choice sequences do not have to be—and are not—part of

the syntax of Nuprl definitions and proofs, i.e., the syntax visible to users. The syntax of terms

occurring in definitions and proofs is the proper subset of Nuprl terms that do not contain choice

sequences as illustrated in https://github.com/vrahli/NuprlInCoq/blob/master/rules/sterm.v. By the theoretical

Nuprl syntax, we refer to the user syntax that does not allow choice sequences to occur in terms, as

opposed to the syntax of terms implemented in our Coq metatheory that allows choice sequences

to occur in terms.
8

Our choice sequences are also similar to Howe’s set-theoretical functions in [53; 54; 52] (also

called “oracles”), which he used to provide a set-theoretical semantics of both Nuprl (extended with

set-theoretical terms) and HOL, allowing the shallow embedding of HOL in Nuprl.

Definition 11 (Nuprl’s syntax with choice sequences)

Nuprl’s (metatheoretical) term syntax presented in Sec. 2 is extended with choice sequences, as

well as an eager application operator:

v ::= · · · | seq(f) (choice sequence)

t ::= · · · | t1@ t2 (eager application)

where f is a Coq function from numbers to numbers.

For example, seq(fun n ⇒ n + 1) is a choice sequence. We use eager applications to reduce lazy

applications of choice sequences. Given a lazy application s (t ) of a choice sequence s to a term t , we
first compute t to a value. If t computes to a natural number n, then s (t ) reduces to the application

of the choice sequence s to n; otherwise the computation either gets stuck or diverges. For example,

seq(fun n ⇒ n + 1) (1) reduces to 2; seq(fun n ⇒ n + 1) (⊥) diverges; and seq(fun n ⇒ n + 1) (⋆)
gets stuck.

8
In recent work, we have explored ways to finitely extend the theoretical Nuprl syntax in order to include choice sequences

in terms.
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Definition 12 (Computing with choice sequences)
The following reduction steps are added to support computations with choice sequences:

seq(f) t 7→ seq(f)@t

i.e., the lazy application of a sequence s to a term t computes in one step to the eager application
of s to t . Eager applications compute as follows:

t1@t 7→ t2@t if t1 7→ t2
v@t1 7→ v@t2 if t1 7→ t2
(λx .b)@v 7→ b[x\v]
seq(f)@i 7→ f(i ) if 0 ≤ i

where f is a Coq function from numbers to numbers, i is a Nuprl integer, and v is a value. In

the last computation step above, we write f(i ) for the computation that extracts a Coq natural

number n from the positive integer i , then applies f to n, and finally builds a Nuprl integer from

the Coq natural number f(n).

Remark 2 (A Note on Decidability). Adding such choice sequences to Nuprl’s (metatheoretical)
terms does have interesting consequences such as: many properties become undecidable. For example,
syntactic equality orα-equality are now undecidable in general. However, it turns out that even though
these properties had been proved and used in the formalization of CTT in Coq, they are not necessary
and we managed to do without them. Note that this is only true about Nuprl’s metatheoretical syntax.
Because Nuprl terms occurring in definitions and proofs do not contain choice sequences, syntactic
equality and α-equality are decidable for the user syntax.

4.1.2 Consistency

Adding choice sequences to Nuprl’s terms also affected Nuprl’s consistency: we had to modify the

following inference rule, called [ApplyCases]:

H ⊢ halts( f (a)) H ⊢ f ∈ Base
H ⊢ f ≃ λx . f (x )

where a is an expression, which is not constrained in any way (i.e., one does not need to show

that it is in some type); and the type halts(t ) = ⋆⪯ (let x := t in ⋆) uses Howe’s approximation

relation to assert that t computes to a value. This rule says that f is computationally equivalent to

its η-expansion λx . f (x ) (i.e. f is a function) if f (a) computes to a value, for some term a. Before
adding choice sequences to Nuprl’s terms, the only way f (a) could compute to a value was if f
would compute to a λ-term. This is not true anymore after adding choice sequences to Nuprl’s

terms. We chose to restate [ApplyCases] as follows:

H ⊢ halts( f (a)) H ⊢ f ∈ Base
H ⊢ f ≃ λx . f (x ) ∨ isChoiceSeq(x , z, f ) ⌊iflam( f , tt, ff)⌋

where

isChoiceSeq(x , z, f ) = ∩x :Base. ∩ z:halts(x ).ifint(x , True, f (x ) ⪯⊥)

and x and z are distinct variables that do not occur free in f . Only the conclusion of the rule

has changed. It now says that if f (a) computes to a value then either (1) f computes to a λ-term
(as before), or (2) it computes to a choice sequence, and therefore f (x ) will be computationally

equivalent to ⊥ when x is not an integer, i.e., it will either get stuck or diverge (terms that either

get stuck or diverge are all computationally equivalent to each other). This rule also says that

the conclusion, which is a ∨, is realized by iflam( f , tt, ff), which checks whether f computes
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to a λ-term: if it does then the conclusion is realized by tt, i.e. inl(⋆), because ⋆ realizes the

left-hand-side of the ∨; otherwise, the conclusion is realized by ff, i.e. inr(⋆), because ⋆ realizes

the right-hand-side of the ∨. Using this new valid rule, we were able to replay Nuprl’s entire library.

This new [ApplyCases] rule provides a partial axiomatization of choice sequences. Note that

because choice sequences are not allowed in Nuprl’s theoretical syntax, there is no way in the

theory that f ≃ λx . f (x ) would not be true for some term f such that f (a) computes to a value,

while isChoiceSeq(x , z, f ) would be. However, we cannot validate the old [ApplyCases] inference

rule that rules out choice sequences, because they do occur in the metatheory.

4.2 BI For Sequences of Terms
Intuitively a similar proof as the one presented at the beginning of Sec. 4.1 could be used at least

when T is Base (defined in Sec. 2.2). Deriving a Bar Induction rule for a larger class of sequences

than sequences of numbers as in Sec. 4.1 would allow deriving induction principles for a larger

class of types using the technique presented in Sec. 5. Following the same scheme as in Sec. 4.1,

we want to add all Coq functions from natural numbers to closed terms, to the collection of Nuprl

terms. However, this modification does not play nicely with Nuprl’s “fresh” ν operator. We explain

this issue below in more details.

4.2.1 Banning Names From Choice Sequences

Let us assume that we change our choice sequence operator seq(f) so that f can now be a Coq

function from numbers to closed Nuprl terms. The Coq function (fun n ⇒ a), where a is a name,

is such a function. In general we cannot compute the collection of all names occurring in such

functions. Therefore, unless we somehow tag this function with a, we have no way of knowing

that it mentions a. Now, the way Nuprl’s ν operator works, as explained in [88], is that to compute

νx .t , if t 7→ u, we first pick a fresh name b w.r.t. t . The name b being fresh w.r.t. t here means

that if b occurs in t then it can only occur in a choice sequence. Then, we compute t[x\b] to w
in one computation step, and finally we return νx .(w[b\x]), where t[a\u] is a capture avoiding
substitution function on names similar to the usual substitution operation on variables. Therefore, if

t contains seq(funn ⇒ a), we have to make sure that we do not picka. Otherwise, when computing

νx .(seq(fun n ⇒ a) 0), we could pick a as our fresh name, reduce (seq(fun n ⇒ a) 0)[x\a], which
is equal to (seq(fun n ⇒ a) 0), to a, perform the substitution a[a\x] = x , and finally return νx .x ,
which would not be correct because the two as are supposed to be different.

We avoid this here by precluding names from occurring in sequences, and change our choice

sequence operator seq(f) so that f is now a Coq function from numbers to name-free closed Nuprl

terms. This means that the Coq type of Nuprl terms is now an ordinal with a limit constructor for

such sequences (see https://github.com/vrahli/NuprlInCoq/blob/master/terms/terms.v for more details regarding

Nuprl’s metatheoretical term syntax).

Because choice sequences do not contain free variables or names, most operations on terms do

not change because the two substitution operations on names and free variables stay unchanged.

Using these choice sequences, we have proved in Coq the validity w.r.t. Nuprl’s PER semantics of

[BarInduction] when the parameter T is the following type, closed under ∼, of name-free closed

terms: {t : Base | (t : Base)#}, where the type (a : A)# asserts that the term a is in the type A
and does not contain names (see Coq file https://github.com/vrahli/NuprlInCoq/blob/master/bar_induction/bar_

induction_ctemr4.v).
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4.2.2 Could Names Occur in Sequences?

We next suggest a possible solution that consists in introspecting computations, whose further

study is left for future work. When performing a computation step on a term of the form νx .t , we
first pick a fresh name a w.r.t. t by not looking inside choice sequences, then we reduce t[x\a] to u
in one computation step, and we compute a new fresh name b w.r.t. both t and u. This is to ensure

that if the computation step applies a sequence to a term and “reveals” new names, then b is not one

of these names. Finally, we compute νx .t using b as our fresh name. Let us consider the example

we gave in Sec. 4.2.1: νx .(seq(fun n ⇒ a) 0). Following the procedure we just described, we first
pick a name that is fresh w.r.t. (seq(fun n ⇒ a) 0) by not looking inside the choice sequence. Here

it does not matter which one we pick. Let us pick c . We reduce the term (seq(fun n ⇒ a) 0)[x\c]
to a in one computation step. Now we pick a name b, which is fresh w.r.t. both (seq(fun n ⇒ a) 0)
and a, and we reduce (seq(fun n ⇒ a) 0)[x\b] to a in one computation step. Finally, we return

the term νx .(a[b\x]), which is equal to νx .a.
Names pose an additional challenge in preserving the key property that Howe’s equivalence

relation ∼, mentioned in Sec. 2.2, is a congruence as proved in [51]. To prove this, Howe first shows

that his approximation relation≼ is a congruence [51]—Howe’s computational equivalence relation

is defined on closed terms as follows: t ∼ u if t ≼ u ∧ u ≼ t . Unfortunately, this is not easy to

prove directly. Howe’s “trick” was to define another inductive relation ≼∗, which is a congruence

and contains ≼ by definition.

In order to deal with the ν operator in [88], we had to slightly modify ≼∗ in the following way:

in order to prove that νx .t ≼∗ u, we have to prove that there exists a t ′ such that t[x\a] ≼∗ t ′[x\a]
and νx .t ′ ≼ u, where the name a has to be fresh w.r.t. t and t ′. Unfortunately, when names are

allowed in choice sequences we cannot anymore compute such a name because it is not decidable

anymore whether a name occurs in a term. Thus, the question of whether the ≼∗ relation can be

adapted so to deal with names in choice sequences remains open.

4.3 Externalizing BI’s Validity Proof
The proof of BI’s validity presented in Sec. 4.1 seemingly relies on classical axioms. It turns out that

these principles are consistent with Nuprl’s PER semantics [6; 5; 40], and can therefore be arguably

considered as being constructive (but not intuitionistic according to Troelstra and van Dalen [99,

pp.4–5]). In this section we identify the “minimal” such axioms that are truly indispensable and

show that they are compatible with Nuprl at the theory level. See squashed-bar-ind-as-a-lemma for a

formalization in Nuprl of the proof presented in this section.

Let us prove ↓P (0,‚) in Nuprl. First we use the law of excluded middle in order to get to assume

¬↓P (0,‚). Unfortunately the law of excluded middle is false in Nuprl when non squashed because,

for example, it contradicts continuity (see [89, Sec.6.3]). However, because the proposition we

are proving is ↓-squashed, we only need the following ↓-squashed version of the law of excluded

middle, which is consistent with Nuprl, as explained in [10; 40; 63]:

H ⊢ ↓(P+¬P )
BY [LEM]

H ⊢ P ∈ Ui

One can prove that this inference rule is consistent with Nuprl using the law of excluded mid-

dle in the metatheoretical proof of its validity w.r.t. Nuprl’s PER semantics as shown in https:

//github.com/vrahli/NuprlInCoq/blob/master/rules/rules_classical.v. This seemingly classical principle is there-

fore computationally justified in the sense that the conclusion of the rule is inhabited by ⋆.
As proved in [63, Thm.4.2], it implies Markov’s principle, which is a principle of constructive
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recursive mathematics (CRM), also called Russian constructive mathematics [27, Ch.3]. We in-

stantiate this ↓-squashed law of excluded middle principle with ↓P (0,‚), and get to assume

↓(↓P (0,‚)+¬↓P (0,‚)), which we can unsquash because we are proving a squashed proposition.

If ↓P (0,‚) is true then we can conclude directly. Let us now assume that ¬↓P (0,‚) is true, and let

us prove False. From BI’s base and bar hypotheses we deduce:

Πs:B.↓Σn:N.↓P (n, s )

Next, we use again the ↓-squashed law of excluded middle to turn the induction hypothesis:

Πn:N.Πs:Bn .(Πm:N.P (n + 1, s ⊕n m)) → P (n, s )

into:

Πn:N.Πs:Bn .¬↓P (n, s ) → ↓Σm:N.¬↓P (n + 1, s ⊕n m)

In the metatheoretical Coq proof presented in Sec. 4.1, we used the axiom of choice to extract a

choice sequence α ∈ B from this formula such that for all n ∈ N, ¬P (n,α ). Instead here we use the

following principle to recursively define choice sequences:

H ⊢ ↓Σf :B.Πn:N.↓P (n, f )
BY [ChoiceSequenceRec]

H ⊢ P (0, s )
H ,n : N, f : Bn , z : P (n, f ) ⊢ ↓Σm:N.P (n + 1, f ⊕n m)
H ,n : N, f : Bn ⊢ P (n, f ) ∈ Type

We have proved that this inference rule is valid w.r.t. Nuprl’s PER semantics using Coq’s axiom

of choice: see Coq file https://github.com/vrahli/NuprlInCoq/blob/master/axiom_of_choice/choice_sequence_ind.v.

Using this principle we get to assume ↓Σf :B.Πn:N.↓¬↓P (n, f ), which is inconsistent with our

hypothesis Πs:B.↓Σn:N.↓P (n, s ).
This allows us to prove the ↓-squashed and unconstrained BI principle presented in Sec.3.1 directly

in Nuprl, with one drawback, which we discuss below. In the spirit of reverse mathematics [96;

58], we have decomposed our ↓-squashed BI rule into a ↓-squashed excluded middle rule and the

[ChoiceSequenceRec] choice principle.

Unfortunately, to use [LEM] we need to be able to prove that P is a type as stated in [LEM]’s single

subgoal. Similarly, to use the [ChoiceSequenceRec] inference rule we need to be able to prove that

P is a well-formed predicate on finite sequences: see [ChoiceSequenceRec]’s third subgoal, which as

we see below is necessary for the rule to be valid. This means that this direct proof in Nuprl of the

↓-squashed and unconstrained BI principle is only for well-formed predicates on finite sequences,

while the BI rule presented in Sec. 3.1 does not require one to prove that P is a well-formed predicate

on finite sequences. The next technical paragraph explains why this is an issue.

If we require one to prove the predicate’s well-formedness in order to use the ↓-squashed and

unconstrained BI principle, then it is not clear whether we can prove BID or BIM from this version

of BI, which might render our direct Nuprl proof of BI less useful than the rule presented in

Sec. 3.1—squashed-bar-ind-as-a-lemma can still be used to prove ↓-squashed propositions. The reason is

that, in the case of BID for example (see Nuprl lemma decidable-bar-rec wf), we use the ↓-squashed and

unconstrained BI principle, i.e. rule [BarInduction], to prove DBR(dec, base, ind, 0,‚) ∈ P (0,‚),
which is a ↓-squashed proposition because equality types can only be inhabited by⋆, but in general

we have no way of proving that λn, s .(DBR(dec, base, ind,n, s ) ∈ P (n, s )) is a well-formed predicate

on finite sequences because in general it means that DBR(dec, base, ind,n, s ) ∈ P (n, s ) has to be

true, which is basically what we are trying to prove. It is therefore essential for our proof of BID that

[BarInduction] does not require one to prove that P is a well-formed predicate on finite sequences.
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As mentioned above, [ChoiceSequenceRec] would not be valid without the third subgoal that

says that P has to be a well-formed predicate on finite sequences. The reason is that the base and

induction hypotheses of this rule only ensure that P is well-formed on the sequence α they define

(and the sequences that differ from α only at one place), while, according to the semantics of Σ
types, the conclusion of this rule requires us to prove that P is well-formed on all possible sequences

in B. Let us provide an example. Let P be:

λn, s . if n=0 then True
else if n=1 then s (0) ≃ 0

else if s (0)=0 then True
else ⋆

[ChoiceSequenceRec]’s base subgoal is true because P (0, s ) computes to True. Its induction subgoal

is also true because if P (n, f ) is true then: (1) either n = 0 and then we can prove that P (1, f ⊕0 0)
is true and P (1, f ⊕0 m) is well-formed for allm ∈ N; (2) or n = 1 and then we get that f (0) ≃ 0,
and we can prove that P (2, f ⊕1 0) and P (2, f ⊕1m) is well-formed for allm ∈ N; (3) or n > 1 and

then we again get that f (0) ≃ 0 because otherwise P (n, f ) is not well-formed, and we can prove

that P (n + 1, f ⊕n 0) and P (n + 1, f ⊕n m) is well-formed for allm ∈ N. However, P (n, f ) is not
well-formed for all n ∈ N and f ∈ B because P (2, λx .1) computes to⋆, which is not a type. See Coq

file https://github.com/vrahli/NuprlInCoq/blob/master/axiom_of_choice/choice_sequence_ind2.v for a formal proof.

5 DERIVINGW TYPES FROM BI
This section describes how one can derive inductive types as W types [72; 79], and especially their

induction principles using BI. A similar construction was described in [21], where the authors built

indexed W types. For simplicity, we only focus here on non-indexed W types.

The construction goes as follows:

(1) We first define co-W type, also sometimes called M types, in Sec. 5.1.

(2) We then define W types as finite co-W types in Sec. 5.2.

(3) We prove an induction principle for W types using Bar Induction in Sec. 5.3.

See for example [1, Sec.5.2] for a discussion of W and M types. Related to the construction presented

here and in [21], Altenkirch et al. showed how to build M types from W types [2; 8]. Instead, here

we build W types from M types. The results presented here have been formalized in Nuprl: http:

//www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/co-recursion.

5.1 M Types
One way of building coinductive types in Nuprl is using intersection types as follows:

corec(F ) = ∩n:N.Fn (Top)

where F 0 (T ) = T and Fn+1 (T ) = F (Fn (T )) (see Sec. 2.3 for details on Top). As explained in [21],

corec(F ) is the greatest fixed point of F if F is monotone and an ω limit preserving function. A

function F on types is monotone if T1 ⊑ T2 implies F (T1) ⊑ F (T2) for any two types T1 and T2. The
type T1 ⊑ T2 expresses that T1 is a subtype of T2, and is defined as λx .x ∈ T1 → T2. A function F on

types is an ω limit preserving function if ∩n:N.F (X (n)) ⊑ F (∩n:N.X (n)) for any X ∈ TypeN.
Using corec, we define co-W types as follows (see Nuprl definition coW):

coW(A,B) = corec(λW .Σa:A.(B (a) →W ))

where A ∈ Type and B ∈ TypeA. An element of a co-W type coW(A,B) is therefore a pair ⟨a, f ⟩ of a
a in A, and a function f in B (a) → coW(A,B).
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For example, we define co-numbers (i.e., steams of numbers) as follows:

coN = coW(B, λa.if a then False else True)

where B is the Boolean type defined as True+True. Zero can then be represented by the pair

⟨tt, λx .⊥⟩where λx .⊥ is a function of type False→ coN; and the successor ofn can be represented
by the pair ⟨ff, λx .n⟩ where λx .n is a function of type True→ coN.

5.2 W Types
A W type will be defined as the finite elements of a co-W type. Because an element of a co-W type

is a (possibly infinite) tree, the finite ones are those that have finite branches. For that we define

the concept of path in an element of a co-W type as follows (see Nuprl definition coPath):

Path(A,B) = N→ (Σa:A.B (a))+True

where A ∈ Type and B ∈ TypeA. Paths can be infinite or finite. We use inr(⋆) to indicate the

end of a path. Given an element of a co-W type ⟨a, f ⟩, a path indicates what b we want to apply

the f to. We then say that a path p is correct up to depth n w.r.t. an elementw of a co-W type if

correctPath(A,n,p,w ) is true, where the recursive correctPath function is defined as follows

(see Nuprl definition correctCoPath):

Definition 13 (correctPath)

correctPath(A,n,p,w ) =
case p (0) of
inl(x ) ⇒ let a,b = x in

let a′, f = w in
a =A a′ ∧ if n=Z0 then True else correctPath(A,n − 1,⇈(p), f (b))

| inr(x ) ⇒ True

where the operator ⇈ shifts a path by 1 as follows: ⇈(p) = λn.p (n + 1).

We are now ready to define W types as follows (see Nuprl definition finiteCoW):

Definition 14 (W types)
W(A,B) = {w : coW(A,B) | finiteCoW(A,w )}

where

finiteCoW(A,w ) = Πp:Path(A,B).(Πn:N.correctPath(A,n,p,w )) → ↓Σn:N.isr(p (n))

and

isr(t ) = if t then ff else tt

The finiteCoW operator states that each path p that is correct w.r.t.w must end at some depth n.

5.3 Induction Principle
Next we prove the following induction principle for W types (see Nuprl lemma wrec wf):
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Theorem 5 (Induction principle for W types)
Πw :W(A,B).wrec(c,w ) ∈ P (w ) is true in CTT, assuming [BarInduction], where

A ∈ Type
B ∈ A→ Type
P ∈ W(A,B) → Type
c ∈ (Πa:A.Π f :(B (a) → W(A,B)).(Πb:B (a).P ( f (b))) → P (⟨a, f ⟩))

and where wrec is the following recursive function (see Nuprl lemma wrec):

wrec(c,w ) = let a, f = w in c a f (λb .wrec(c, f (b)))

In order to prove the above lemma, we use the following variant of the BI rule presented in

Sec. 3.1:

(wfb) H ,n : N, s : Bn ⊢ B (n, s ) ∈ Type
(wfr) H ,n : N, s : Bn ⊢ R (n, s ) ∈ Type
(init) H ⊢ R (0,‚)
(bar) H , s : B, z : ∩m:N.↓R (m, s ) ⊢ ↓Σn:N.B (n, s )
(base) H ,n : N, s : Bn , z : ↓R (n, s ),b : B (n, s ) ⊢ P (n, s )
(ind) H ,n : N, s : Bn , z : ↓R (n, s ), i : (Πm:T .R (n + 1, s ⊕n m) → P (n + 1, s ⊕n m)) ⊢ P (n, s )

H ⊢ ↓P (0,‚)

where R is here a spread law. Note that this rule is at least as strong as the one presented in Sec. 3.1

because the spread law could simply be λn, s .True. Using our Coq formalization, we have proved

the validity of this rule: https://github.com/vrahli/NuprlInCoq/blob/master/bar_induction/bar_induction5_con.v.

For simplicity we restrict ourselves to spreads of natural numbers, but we conjecture that a

similar rule will be true about spreads of terms in NBase = {t : Base | (t : Base)#} (see Sec. 4.2.1).
Therefore, again for simplicity, we only prove here the above induction principle where A and B (a)
are essentially subtypes of N, but again the same principle is true for subtypes of NBase. For this
reason, we treat (Σa:A.B (a))+True as if it was N.

Proof outline. We use the following spread law:

λn,p.correctPath(A,n, λm.ifm<n then p (m) else inr(⋆),w )

and the following bar predicate:

λn,p.if 0<n then isr(p (n − 1)) else False

Also, instead of proving: wrec(c,w ) ∈ P (w ) we switch to proving the equivalent proposition

↓G (0,‚), where

G = λn,p.walkPathF(n,
λm.ifm<n then p (m) else inr(⋆),
w,
λw .wrec(c,w ) ∈ P (w ),
True)
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The recursive function walkPathF is defined as follows—assuming that p is correct w.r.t.w—(see

Nuprl lemma walkCoPathF):

walkPathF(0,p,w, F ,d ) = F (w )
walkPathF(n + 1,p,w, F ,d ) = let a, f = w in

case p (0) of
inl(x ) ⇒ let a′,b = x in

walkPathF(n,⇈(p), f (b), F ,d )
| inr(x ) ⇒ d

We then use [LawlikeBarInduction] with the above mentioned spread law and bar predicate. It

then remains to verify that the [LawlikeBarInduction]’s hypotheses are true, i.e., essentially that

(bar), (base), and (ind) are true about these spread law and bar predicate—the other hypotheses

are trivial. This is done straightforwardly. More details can be found at wrec wf. □

6 RELATION TO OTHER INTUITIONISTIC NOTIONS
In this section we explore the connections to other salient intuitionistic principles, namely the

Fan Theorem in Sec. 6.1, which is a widely used consequence of Bar Induction; as well as Kripke’s

Schema 6.2, which formalizes Brouwer’s notion of the creative (or creating) subject.

6.1 The Fan Theorem
As mentioned in Sec. 1, the Fan Theorem says that every decidable (or detachable) bar on a finitary

spread is uniform [99, Ch.7,Sec.7; 43, Sec.3.2]. The more general version of FT, sometimes called the

“Full Fan Theorem” [26] (FFT), that does not require the bar to be decidable is also intuitionistically

valid [99, Ch.7,Prop.7.4] and can be derived from FT and continuity (see below). FT is the classical

contrapositive of Weak König’s Lemma (WKL), which says that every infinite binary tree has an

infinite path—see for example [57; 59; 16]. Constructively, FT is equivalent to a “unique” version of

WKL, often denoted WKL! [16]. It turns out that FT is equivalent to the the Uniform Continuity

principle (UC), when assuming the continuous choice axiom (the Weak Continuity Principle plus

some version of the axiom of choice often denoted AC 1,0) [27; 15; 87].

As mentioned in Sec. 3.5, the process of finding the modulus of continuity of a function is

not extensional in the sense that it can return different results for extensionally equal functions.

Therefore, as proved by Kreisel [66, p.154], Troelstra [100, Thm.IIA], and Escardó and Xu [45],

Brouwer’s Continuity Principle has to be truncated in a Martin-Löf-like type theory such as Nuprl.

However, as proved by Escardó and Xu [45], truncation is not always required when moving from

the Baire space to the Cantor space (i.e., sequence of numbers to sequence of Booleans): they showed

that in a Martin-Löf-like type theory such as Nuprl, the truncated version of the uniform Continuity
Principle is equivalent to its non-truncated version (in [112], they also developed a continuous model

of Gödel’s system T and its logic HA
ω
, within which the uniform continuity holds). Following their

method, we also derived within Nuprl the following non-truncated uniform Continuity Principle

for functions on the Cantor space (see Nuprl lemma strong-continuity2-implies-uniform-continuity2-nat):

UCP = ΠF :C → N.Σn:N.Π f ,д:C. f =Cn д → F ( f ) =N F (д)

where C = BN, Cn = B
Nn

, and where the Σ type that asserts the existence of a uniform modulus of

continuity is not squashed. Therefore, by using continuity to prove FFT from FT, it turns out that

we can derive the following non-truncated version of FFT where none of the Σs are truncated—see
Nuprl lemma general-fan-theorem-troelstra2, whose proof follows the one of [99, Prop.7.4.(i)]:

ΠP :(Πn:N.Cn → P).(Π f :C.Σn:N.P n f ) → (Σk :N.Π f :C.Σn:Nk .P n f )
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as well as the following truncated version—see Nuprl lemma general-fan-theorem-troelstra-sq—where

both Σs are truncated:

ΠP :(Πn:N.Cn → P).(Π f :C.⇃Σn:N. P n f ) → (⇃Σk :N. Π f :C.Σn:Nk .P n f )

which follows from the non-squashed version of FFT and a ⇃-squashed version of AC1,0.

6.2 Kripke’s Schema
Kripke’s Schema (KS for short—according to Troelstra and Van Dalen [99, p.241], a name coined by

Myhill [77]) formalizes Brouwer’s notion of the creative subject. It is often stated as follows:

∀A : P. ∃a : B. (∃x : N. a(x ) =N 1) ⇐⇒ A

As proved for example by Bridges and Richman [27, p.116] or Troelstra and Van Dalen [99,

Ch.4,Sec.9.5], KS is inconsistent with Markov’s principle (MP). As discussed below, Myhill proved

that KS contradicts some continuity axiom. Van Atten and Van Dalen also used KS to prove that

there are no discontinuous functions in [12, Sec.3.2]. KS is classically valid and we have proved the

validity of the following squashed version of KS in Coq (see https://github.com/vrahli/NuprlInCoq/blob/

master/rules/kripkes_schema.v):

H ⊢ A ∈ Ui
H ⊢ ↓Σa:B. (Σx :N.(a(x ) =N 1 ∧ Πy:N.x ,N y → a(y) =N 0)) ⇐⇒ A

Several variants of this schema are discussed in the literature. The one stated above corresponds

to the strong form of Kripke’s schema, which is sometimes stated as follows (as in [43, p.244; 41,

p.238; 99, Ch.4,Sec.9.3; 12, Sec.3.2]):

↓Σa:B.

(
Σx :N.a(x ) =N 1 ⇐⇒ A
∧ Πn,m:N.n ≤ m → a(n) ≤ a(m) ≤ 1

)
There is also a weaker form of this axiom which reads as follows (see also [43, p.244; 77, p.295;

75, p.168; 55, p.241; 76, p.152; 41, p.238; 99, Ch.4,Sec.10.6]):

↓Σa:B. *.
,

Πx :N.a(x ) =N 1→ A
∧ ¬A ⇐⇒ Πx :N.a(x ) =N 0

∧ Πn,m:N.n ≤ m → a(n) ≤ a(m) ≤ 1

+/
-

As mentioned above, Myhill proved that KS contradicts ∀α∃β-continuity, which is sometimes

referred to as CP∃β , and which can be stated as follows:

ΠA:B → B → P.(Πa:B.Σb:B. A(a,b)) → Σc:NB . CONT(c ) ∧ Πa:B.A(a, shift(c,a))

where

shift(c,a) = λn.c (λk .if k=Z0 then n else a(k ))
CONT(F ) = Π f :B.Σn:N. Πд:B. f =Bn д → F ( f ) =N F (д)

As we proved in https://github.com/vrahli/NuprlInCoq/blob/master/continuity/unsquashed_continuity.v, the version

of CP∃β , where all the occurrences of Σ are replaced by Σ, is false in CTT because it follows trivially

from the fact that the untruncated version of WCP is false. Following Dummett’s version [43, p.246]

of Myhill’s proof, we have proved that the ⇃-truncated version of KS contradicts CP∃β where Σ is ⇃Σ
(see for example: https://github.com/vrahli/NuprlInCoq/blob/master/continuity/unsquashed_continuity.v). However,

note that we have not validated either of (the ⇃-truncated versions of) CP∃β or of KS⇃ (see Fig. 2).

On the contrary, following Troelstra and Van Dalen’s proof, we have proved that KS is inconsistent

with MP [99, Ch.4,Sec.9.5], and, as mentioned in Sec. 4.3, we have proved that MP is true in Nuprl

using some truncated form of excluded middle, which we validated using our Coq model.
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7 FURTHER RELATEDWORK
As mentioned in the introduction, Howard and Kreisel studied Brouwer’s Bar Induction and

Continuity Principles in [50] and showed the equivalence between the axiom of transfinite induction

(TI)—sometimes called the bar rule [94]—and BIM, assuming the strong continuity principle. They

also showed without assuming continuity that TI for decidable relations is equivalent to BID. TI

says that one can use the transfinite induction principle on well-founded relations. They consider

the two following notions of well-foundedness: a strong form

WF1 (ρ) = ∀f ∃n¬( f (n)ρ f (n + 1))

and a weak form

WF2 (ρ) = ∀f ∃n¬∀m ≤ n( f (m)ρ f (m + 1))

Their transfinite induction principle says:

∀x (∀y (xρy → Q (y)) → Q (x )) → ∀xQ (x )

In Coq, TI is captures simply by the following lemmas: (1) well founded ind for Prop, and (2)

well founded induction type for Type (see the Coq library https://coq.inria.fr/library/Coq.Init.Wf.html).

Well-foundedness is inductively defined in Coq using the accessibility predicate Acc. It can be

shown that if a decidable relation is well-founded using Coq’s definition then it is well-founded

using WF1.

The bar recursion operators mentioned in Sec. 3 and some of their variants have been extensively

studied [95; 14; 19; 81; 17; 85; 46; 23; 22]. However, to the best of our knowledge, it has not been

studied whether these variants (such as Berger and Oliva’s modified bar recursion operator [17])

lead to new BI principles.

Troelstra lists some uses of BI in [102, p.114], e.g. to prove strong normalization of systems

such as N-HA
ω
. Veldman and Bezem proved an intuitionistically valid reformulation of Ramsey’s

theorem using BIM [109; 107]. We have proved this result in Nuprl: see lemma intuitionistic-Ramsey.

In [111], the authors proved similar results using directly Coq’s inductive types rather than BI.

Choice sequences have also been widely studied over the years [64; 60; 65; 67; 101; 43; 99; 110].

One interesting result regarding choice sequences is the so-called “elimination of choice sequences”

theorem [65, Sec.2; 67, Ch.7; 101, Ch.3; 43, pp.221–222; 42] that eliminates quantifications over

choice sequences. This theorem relies on a mapping from the formulae of the CS formal system [67]

to formulae of the IDB1 formal system [67] that do not contain choice sequence variables. It is left

to future work to study whether a similar result could be used to prove that BI is consistent with

Nuprl without using choice sequences.

As mentioned above MP was shown to be consistent with Nuprl (using a squashed version of the

law of excluded middle), and it was also shown directly in Nuprl that MP is inconsistent with KS

(following [27, p.116; 99, Ch.4,Sec.9.5]). In contrast, in [37] the authors established the independence

of MP with Martin-Löf’s type theory. Their method relies on a forcing extension of type theory,

which contains a “generic” infinite sequence of Booleans. Kripke also proved a similar result for

Kreisel’s FC system of absolutely free choice sequences [68, p.104]. In [38], the authors showed

that MP and the axiom of countable choice are not provable in dependent type theory with one

univalent universe and propositional truncation.

Finally, it is worth noting that our method of building a model of Nuprl extended with BI

principles bears some resemblance with forcing [32; 33] where our forcing conditions are our

choice sequences.
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8 CONCLUSION
Bar induction is a salient intuitionistic principle which allows for powerful constructive inductive

reasoning, equivalent to that of the standard transfinite induction. In this work we formally

established its compatibility with Constructive Type Theory, the type theory implemented by the

Nuprl proof assistant. We proved the validity of a ↓-squashed BI inference rule for sequences of

name-free closed terms, from which we derived a non-squashed version of BID for sequences of

name-free closed terms, as well as a ⇃-version of BIM for sequences of numbers. We have also

shown that the general BIM does not hold for non-⇃-squashed propositions.

Several questions remain open such as: (1) Can the ⇃-squashed Continuity Principle for numbers

be generalized to sequences of terms? (2) Can the ↓-squashed Bar Induction principle be generalized

to sequences of terms with names? (3) What is the proof-theoretical strength of Nuprl? Is it stronger

than before adding choice sequences or Bar Induction?

In [88] it was shown that versions of the Continuity Principle for numbers are compatible with

CTT. This work establishes CTT’s compatibility with variants of another key intuitionistic principle,

BI, and therefore takes another step towards extending CTT into a new kind of type theory, one

enriched with intuitionistic concepts and principles. There remains a great deal to investigate

in this direction, with the goal of creating a highly expressive constructive type theory that will

advance the state of the art in powerful type systems and improve the performance and expressive

power of programming languages.
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