Extending Church-Turing Computability

Liron Cohen

Joint work with Vincent Rahli, Mark Bickford and Robert Constable

HIM Summer School on Types, Sets and Constructions May 2018

Broader Notion of Computability

Free choice sequences were introduced by Brouwer to capture the intuition of the continuum [Second Act of Intuitionism,1919].

"In Brouwer's case there seems to have been a nagging suspicion that unless he personally intervened to prevent it, the continuum would turn out to be discrete"

- Bishop, 1985

Free Choice Sequences

"new mathematical entities... in the form of infinitely proceeding sequences $p_1, p_2, ..., p_2, ..., p_2, ..., p_1$ whose terms are chosen more or less freely from mathematical entities previously acquired"

- Brouwer, 1919

Law-less (Free)

Some Consequences

Requires the existence of some non-recursive functions Entails a restriction on the behavior of all nonrecursive functions

Litrature

- D. Bridges and F. Richman. Varieties of Constructive Mathematics. Cambridge University Press, 1987.
- T. Coquand and B. Mannaa. The Independence of Markov's Principle in Type Theory. In: FSCD 2016. Vol. 52. LIPIcs, 17:1–17:18.
- D. van Dalen. An interpretation of intuitionistic analysis. In: Annals of mathematical logic 13.1. 1978, pp. 1–43.
- M. H. Escardó and C. Xu. The Inconsistency of a Brouwerian Continuity Principle with the Curry-Howard Interpretation. In: TLCA 2015. Vol. 38. LIPIcs, pp. 153–164.
- J. R. Moschovakis. An intuitionistic theory of lawlike, choice and lawless sequences. In: Logic Colloquium'90, Helsinki. 1993, pp. 191–209.
- M. Rathjen. A note on Bar Induction in Constructive Set Theory. In: Math. Log. Q. 52.3. 2006, pp. 253–258.
- A. S. Troelstra. Choice sequences: a chapter of intuitionistic mathematics. Clarendon Press Oxford, 1977.

Our Goal

Extend the constructive type theory implemented by the Nuprl proof assistant to support Brouwer's broader sense of computability through the embedding of choice sequences

A new intuitionistic type theory — BITT

Key implementation features

In the theory:

Free choice sequence =

Finite, yet unbounded, non-deterministic sequence

open-ended

In the model:

A Beth-style semantics

possible worlds = Library extensions

"state"

Nuprl in a Nutshell

- Implements constructive type theory (CTT)
 - extensional
 - with dependent types
 - with partial functions
- Types are interpreted as
 PERs on terms

 Adding a value to a choice sequence entails proving that the restriction of the sequence is satisfied.

For decidable restrictions, this can be done automatically.

Name Spaces

A mechanism for enforcing certain restrictions.

Extended Computation System

<i>csn</i> ∈ CSName	::=	$\langle s, space \rangle$	C.S. name
<i>s</i> ∈ RawCSName			
<i>space</i> ∈ Space	::=	$n \mid [n_1, \dots, n_k]$	C.S. name space
$v \in Value$::=	$\ldots seq(csn)$	C.S.
<i>vt</i> ∈ Type	::=	\dots Free (n)	C.S. type
<i>t</i> ∈ Term	::=	I if $t_1 = t_2$ then t_3 else t_4	C.S. equality

Operational Semantics

if $cog(agn) - cog(agn)$ then t also t is	<i>t</i> ₁	$csn_1 = csn_2$
If seq(csn_1)=seq(csn_2) then l_1 erse $l_2 \mapsto_{lib}$		$csn_1 \neq csn_2$

The computation rules explicitly depend on the library

 $seq(csn)(i) \mapsto_{lib} cs[i]$ when cs[i] is defined in *lib*

Beth-Style Semantics

- The notion of truth has to also explicitly depend on the library.
- The libraries behave as the worlds in the possibleworld semantics, and in any particular library the semantic is induced by the realizability semantics.

$$\exists x.a(100) = x$$

Should be valid

Not valid in Kripke Semantics Need to use Beth Semantics In Beth models objects only need to "eventually" exists

Bars

- Bar of a library = a collection of libraries covering all possible extensions of the library.
- Operations on bars:
 - intersecting bars
 - raising bars

- collapsing/expanding bars
- Types are interpreted as PERs on closed terms that need only exist in a bar of the library.

Type System

Building BITT

- Define operators that interpret the standard type constructors.
- Adding new constructors:
 - BAR assigns meaning to types at a library, if they are defined in some bar.
 - FREE assigns meaning to new Free(n) types.
- Define an hierarchy of universes by closing under the type constructors.
- BITT is the collection of all universes closed under the type constructors.

BITT satisfies

symmetry, transitivity,...

monotonicity + locality

The Axioms

• For any finite list of values there is a choice sequence that extends it.

 $\forall n : \mathbb{N}. \forall f : B_{\mathbb{N}}. \exists a : Free(0). f =_{B_{\mathbb{N}}} a$

• Decidability of equality.

 $\forall a, b : Free(0).a \simeq b \lor \neg a \simeq b$

Axiom of Open Data

 $\forall a: Free(0).\phi(a) \Rightarrow \downarrow \exists n: \mathbb{N}.\forall b: Free(0).a =_{\mathbb{N}_n} b \Rightarrow \phi(b)$

 If φ holds for a choice sequence, then it has a finite initial segment, l, s.t. φ holds for all choice sequences that extend l.*